Discretization issues of high-order sliding modes

Abstract Uncertain high-relative-degree problems of finite-time-stable output regulation are only solvable by means of high-order sliding-mode (HOSM) controllers. Output-feedback HOSM controllers make use of robust exact differentiators also based on HOSMs. It is proved that the ultimate asymptotic accuracy of output-feedback HOSM technique is preserved, if its digital implementation in controlling continuous-time systems is based on the simple zero-order-hold control and internal one-step Euler integration. At the same time due to the integration errors there is a certain performance degradation of digital HOSM differentiators solely used for signal processing.

[1]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[2]  Alberto Isidori,et al.  Nonlinear Control Systems, Second Edition , 1989, Communications and Control Engineering.

[3]  Leonid M. Fridman,et al.  An averaging approach to chattering , 2001, IEEE Trans. Autom. Control..

[4]  Leonid M. Fridman,et al.  Accuracy of Homogeneous Sliding Modes in the Presence of Fast Actuators , 2010, IEEE Transactions on Automatic Control.

[5]  Yaodong Pan,et al.  Variable structure control with sliding sector , 2000, Autom..

[6]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[7]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[8]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[9]  Arie Levant,et al.  Integral High-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[10]  Arie Levant,et al.  Homogeneity approach to high-order sliding mode design , 2005, Autom..

[11]  V. Haimo Finite time controllers , 1986 .

[12]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[13]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  A. Zinober Variable Structure and Lyapunov Control , 1994 .

[15]  Yuri B. Shtessel,et al.  Continuous Traditional and High-Order Sliding Modes for Satellite Formation Control , 2005 .

[16]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[17]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[18]  A. N. Atassi,et al.  Separation results for the stabilization of nonlinear systems using different high-gain observer designs ☆ , 2000 .

[19]  Arie Levant,et al.  Chattering Analysis , 2007, IEEE Transactions on Automatic Control.

[20]  S. V. Emel'yanov,et al.  Higher-order sliding modes in binary control systems , 1986 .

[21]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[22]  Leonid M. Fridman,et al.  Analysis of chattering in continuous sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[23]  Giorgio Bartolini,et al.  A survey of applications of second-order sliding mode control to mechanical systems , 2003 .

[24]  G. Bartolini,et al.  Chattering avoidance by second-order sliding mode control , 1998, IEEE Trans. Autom. Control..

[25]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[26]  Leonid Fridman Chattering analysis in sliding mode systems with inertial sensors , 2003 .