Polynomial extension operators for H1, H(curl) and H(div)-spaces on a cube

This paper is devoted to the construction of continuous trace lifting operators compatible with the de Rham complex on the reference hexahedral element (the unit cube). We consider three trace operators: The standard one from H 1 , the tangential trace from H(curl) and the normal trace from H(div). For each of them we construct a continuous right inverse by separation of variables. More importantly, we consider the same trace operators acting from the polynomial spaces forming the exact sequence corresponding to the Nedelec hexahedron of the first type of degree p. The core of the paper is the construction of polynomial trace liftings with operator norms bounded independently of the polynomial degree p. This construction relies on a spectral decomposition of the trace data using discrete Dirichlet and Neumann eigenvectors on the unit interval, in combination with a result on interpolation between Sobolev norms in spaces of polynomials.

[1]  Rafael Muñoz-Sola,et al.  Polynomial Liftings on a Tetrahedron and Applications to the h - p Version of the Finite Element Method in Three Dimensions , 1997 .

[2]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[3]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[4]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[5]  Leszek Demkowicz,et al.  Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .

[6]  J.,et al.  EFFICIENT PRECONDITIONING FOR THE p-VERSION FINITE ELEMENT METHOD IN TWO DIMENSIONS , .

[7]  Mark Ainsworth,et al.  Explicit polynomial preserving trace liftings on a triangle , 2009 .

[8]  Daniele Funaro,et al.  The Schwarz algorithm for spectral methods , 1988 .

[9]  Norbert Heuer,et al.  An extension theorem for polynomials on triangles , 2008 .

[10]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[11]  Faker Ben Belgacem Polynomial extensions of compatible polynomial traces in three dimensions , 1994 .

[12]  Monique Dauge,et al.  Polynomials in the Sobolev World , 2007 .

[13]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[14]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[15]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[16]  Yvon Maday,et al.  Relèvement polynômial de traces et applications , 1990 .

[17]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[18]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[19]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[20]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[21]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[22]  A. Bu On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[23]  Richard Bellman A note on an inequality of E. Schmidt , 1944 .

[24]  Leszek F. Demkowicz,et al.  p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..

[25]  Leszek Demkowicz,et al.  Quasioptimality of some spectral mixed methods , 2004 .