Extensions of mixed-µ bounds to monotonic and odd monotonic nonlinearities using absolute stability theory†

In this paper we make explicit connections between classical absolute stability theory and modern mixed-μ analysis and synthesis. Specifically, using the parameter-dependent Lyapunov function framework of Haddad and Bernstein and the frequency dependent off-axis circle interpretation of How and Hall, we extend previous work on absolute stability theory for monotonic and odd monotonic nonlinearities to provide tight approximations for constant real parameter uncertainty. An immediate application of this framework is the generalization and reformulation of mixed-μ analysis and synthesis in terms of Lyapunov functions and Riccati equations. This observation is exploited to provide robust, reduced-order controller synthesis while avoiding the standard D, N - K iteration and curve-fitting procedures.

[1]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[2]  J. Doyle,et al.  Quadratic stability with real and complex perturbations , 1990 .

[3]  J. Willems,et al.  The Dissipation Inequality and the Algebraic Riccati Equation , 1991 .

[4]  E. Collins,et al.  Riccati Equation Approaches for Small Gain, Positivity, and Popov Robustness Analysis , 1994 .

[5]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[6]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[7]  J. How,et al.  Applications of Popov controller synthesis to benchmark problems with real parameter uncertainty , 1994 .

[8]  Jonathan P. How,et al.  Robust control design with real parameter uncertainty using absolute stability , 1993 .

[9]  M. Srinath,et al.  Some aspects of the Lur'e problem , 1967, IEEE Transactions on Automatic Control.

[10]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[11]  Jose B. Cruz,et al.  Feedback systems , 1971 .

[12]  J. C. Willems,et al.  The dissipation inequality for systems described by high-order differential equations , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[13]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[14]  E. A. S Guillemin,et al.  Synthesis of Passive Networks , 1957 .

[15]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[16]  P. Moylan,et al.  Dissipative Dynamical Systems: Basic Input-Output and State Properties , 1980 .

[17]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[18]  Kumpati S. Narendra,et al.  Stability of feedback systems containing a single odd monotonic nonlinearity , 1967 .

[19]  Z. Rekasius,et al.  Stability analysis of nonlinear control systems by the second method of Liapunov , 1962 .

[20]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[21]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[22]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[23]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[24]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[25]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. 2 , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[26]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[27]  K. Narendra,et al.  An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity , 1968 .

[28]  K. Narendra,et al.  Frequency Domain Criteria for Absolute Stability , 1973 .

[29]  K. Narendra,et al.  Stability of a Class of Differential Equations with a Single Monotone Nonlinearity , 1966 .

[30]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[31]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[32]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[33]  J. P. Lasalle,et al.  Absolute Stability of Regulator Systems , 1964 .

[34]  G. Leitmann Guaranteed Asymptotic Stability for Some Linear Systems With Bounded Uncertainties , 1979 .

[35]  S. Joshi,et al.  Strictly positive real transfer functions revisited , 1990 .

[36]  M. Thathachar,et al.  On a modified Lur'e problem , 1967, IEEE Transactions on Automatic Control.

[37]  J. Doyle,et al.  mu analysis with real parametric uncertainty , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[38]  I. Petersen Disturbance attenuation and H^{∞} optimization: A design method based on the algebraic Riccati equation , 1987 .

[39]  Michael Safonov,et al.  Computer-aided stability analysis renders Papov criterion obsolete , 1987, 26th IEEE Conference on Decision and Control.

[40]  S. Lefschetz Stability of nonlinear control systems , 1966 .

[41]  Dennis S. Bernstein,et al.  Optimal Projection for Uncertain Systems (OPUS): A Unified Theory of Reduced-Order, Robust Control Design , 1988 .

[42]  R. H. Cannon,et al.  Experiments in control of flexible structures with noncolocated sensors and actuators , 1984 .

[43]  Wassim M. Haddad,et al.  Riccati Equation Approaches for Robust Stability and Performance Analysis Using the Small Gain, Positivity, and Popov Theorems , 1993, 1993 American Control Conference.