Review of optical coherence tomography based angiography in neuroscience

Abstract. The brain is a complex ecosystem, consisting of multiple layers and tissue compartments. To facilitate the understanding of its function and its response to neurological insults, a fast in vivo imaging tool with a micron-level resolution, which can provide a field of view at a few millimeters, is desirable. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (∼10  μm) and without a need for contrast agents. Recent development of OCT-based angiography has started to shed some new light on cerebral hemodynamics in neuroscience. We give an overview of the recent developments of OCT-based imaging techniques for neuroscience applications in rodents. We summarize today’s technological alternatives for OCT-based angiography for neuroscience and provide a discussion of challenges and opportunities. Moreover, a summary of OCT angiography studies for stroke, traumatic brain injury, and subarachnoid hemorrhage cases on rodents is provided.

[1]  N. Harel,et al.  Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. , 2002, Cerebral cortex.

[2]  D. Kleinfeld,et al.  Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[4]  Ruikang K. Wang,et al.  Methods and algorithms for optical coherence tomography-based angiography: a review and comparison , 2015, Journal of biomedical optics.

[5]  Jeffrey L. Saver,et al.  Extending Reperfusion Therapy for Acute Ischemic Stroke: Emerging Pharmacological, Mechanical, and Imaging Strategies , 2005, Stroke.

[6]  David A Boas,et al.  Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence tomography , 2015, Neurophotonics.

[7]  David A Boas,et al.  Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux. , 2014, Biomedical optics express.

[8]  Ruikang K. Wang,et al.  In vivo optical imaging of revascularization after brain trauma in mice. , 2011, Microvascular research.

[9]  Ruikang K. Wang,et al.  Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice , 2015, The Journal of Neuroscience.

[10]  David A Boas,et al.  Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. , 2010, Optics letters.

[11]  Ruikang K. Wang,et al.  Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo. , 2009, Journal of biomedical optics.

[12]  Randy J. Nelson,et al.  Stroke in Estrogen Receptor-α–Deficient Mice , 2000 .

[13]  Scott Barry,et al.  OCT methods for capillary velocimetry , 2012, Biomedical optics express.

[14]  Ruikang K. Wang,et al.  Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke , 2015, Neurophotonics.

[15]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[16]  Ruikang K. Wang,et al.  Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies , 2014, Physics in medicine and biology.

[17]  L. Sokoloff,et al.  Effects of anesthesia on functional activation of cerebral blood flow and metabolism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[19]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[20]  Ruikang K. Wang,et al.  Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity. , 2010, Optics letters.

[21]  J. Barton,et al.  Flow measurement without phase information in optical coherence tomography images. , 2005, Optics express.

[22]  R. Gill Measurement of blood flow by ultrasound: accuracy and sources of error. , 1985, Ultrasound in medicine & biology.

[23]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[24]  Thomas Brinker,et al.  Multiplicity of cerebrospinal fluid functions: New challenges in health and disease , 2008, Cerebrospinal Fluid Research.

[25]  O. Krichevsky,et al.  Fluorescence correlation spectroscopy: the technique and its applications , 2002 .

[26]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[27]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[28]  Ruikang K. Wang,et al.  Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain , 2015, Scientific Reports.

[29]  Daniel M. Schwartz,et al.  In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography , 2011, Biomedical optics express.

[30]  Sava Sakadžić,et al.  Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke , 2013, PloS one.

[31]  Ruikang K. Wang,et al.  Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography. , 2006, Optics letters.

[32]  Ruikang K. Wang,et al.  4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source. , 2015, Optics letters.

[33]  Qifa Zhou,et al.  Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow. , 2015, Optics letters.

[34]  Ruikang K. Wang,et al.  Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. , 2007, Optics express.

[35]  N C Andreasen,et al.  Cerebral blood flow and personality: a positron emission tomography study. , 1999, The American journal of psychiatry.

[36]  A. Cruickshank,et al.  Subarachnoid haemorrhage , 2007, The Lancet.

[37]  Kazuhiro Sasaki,et al.  Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics. , 2012, Optics express.

[38]  Ruikang K. Wang,et al.  Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice , 2010, Journal of Neuroscience Methods.

[39]  Hugang Ren,et al.  Quantitative imaging of red blood cell velocity invivo using optical coherence Doppler tomography. , 2012, Applied physics letters.

[40]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[41]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[42]  Meng-Tsan Tsai,et al.  Microvascular Imaging Using Swept-Source Optical Coherence Tomography with Single-Channel Acquisition , 2011 .

[43]  Y. C. Tzeng,et al.  Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function , 2011, Journal of Neuroscience Methods.

[44]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[45]  Bruce J. Tromberg,et al.  A comparison of Doppler optical coherence tomography methods , 2012, Biomedical optics express.

[46]  Ruikang K. Wang,et al.  Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact. , 2010, Journal of biomedical optics.

[47]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[48]  Ahhyun S Nam,et al.  Complex differential variance algorithm for optical coherence tomography angiography. , 2014, Biomedical optics express.

[49]  D. Kleinfeld,et al.  Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion , 2006, PLoS biology.

[50]  Ruikang K. Wang,et al.  Measurement of particle concentration in flow by statistical analyses of optical coherence tomography signals. , 2011, Optics letters.

[51]  David A. Boas,et al.  Quantitative cerebral blood flow with Optical Coherence Tomography , 2010, Optics express.

[52]  David A Boas,et al.  Multiple-Capillary Measurement of RBC Speed, Flux, and Density with Optical Coherence Tomography , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  Ruikang K. Wang,et al.  Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice. , 2011, Journal of biomedical optics.

[54]  Congwu Du,et al.  Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. , 2014, Biomedical optics express.

[55]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[56]  M. Leahy,et al.  Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images , 2010, Journal of biophotonics.

[57]  A. Grinvald,et al.  Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Ruikang K. Wang,et al.  Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate. , 2011, Journal of biomedical optics.

[59]  Trevor J. Vincent,et al.  Longitudinal Brain size Measurements in App/ps1 Transgenic Mice , 2010 .

[60]  M. Heinricher,et al.  Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage , 2009, Neuroscience.

[61]  Ruikang K. Wang,et al.  Thrombin Mutant W215A/E217A Treatment Improves Neurological Outcome and Reduces Cerebral Infarct Size in a Mouse Model of Ischemic Stroke , 2011, Stroke.

[62]  Ruikang K. Wang,et al.  Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography , 2014, PloS one.

[63]  H. Urey,et al.  MEMS Laser Scanners: A Review , 2014, Journal of Microelectromechanical Systems.

[64]  Ruikang K. Wang,et al.  Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact. , 2011, Journal of biophotonics.

[65]  Bernard Choi,et al.  Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. , 2010, Journal of biomedical optics.

[66]  Ruikang K. Wang,et al.  Conditional Ablation of Neuroprogenitor Cells in Adult Mice Impedes Recovery of Poststroke Cognitive Function and Reduces Synaptic Connectivity in the Perforant Pathway , 2013, The Journal of Neuroscience.

[67]  S. Boppart Optical coherence tomography: technology and applications for neuroimaging. , 2003, Psychophysiology.

[68]  Ruikang K. Wang,et al.  Wide velocity range Doppler optical microangiography using optimized step-scanning protocol with phase variance mask , 2013, Journal of biomedical optics.

[69]  Haishan Zeng,et al.  Does optical microangiography provide accurate imaging of capillary vessels?: validation using multiphoton microscopy , 2014, Journal of biomedical optics.

[70]  David A Boas,et al.  Optical coherence tomography for the quantitative study of cerebrovascular physiology , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[71]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[72]  A. Buchan,et al.  Laser Doppler flowmetry to measure changes in cerebral blood flow. , 2014, Methods in molecular biology.

[73]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[74]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[75]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[76]  Bojana Stefanovic,et al.  Functional Reactivity of Cerebral Capillaries , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[77]  C. Degueldre,et al.  A positron emission tomography study of voluntarily and electrically contracted human quadriceps , 1997, Muscle & nerve.

[78]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[79]  C. Werner,et al.  Pathophysiology of traumatic brain injury. , 2007, British journal of anaesthesia.

[80]  Ruikang K. Wang,et al.  Intracisternal Administration of Tissue Plasminogen Activator Improves Cerebrospinal Fluid Flow and Cortical Perfusion After Subarachnoid Hemorrhage in Mice , 2014, Translational Stroke Research.

[81]  Eric R. Muir,et al.  Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals , 2015, NeuroImage.

[82]  Walter J. Riker A Review of J , 2010 .

[83]  Adrian Mariampillai,et al.  Optimized speckle variance OCT imaging of microvasculature. , 2010, Optics letters.

[84]  D. Boas,et al.  Laser speckle contrast imaging in biomedical optics. , 2010, Journal of biomedical optics.

[85]  Ruikang K. Wang,et al.  Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask , 2014, Journal of biomedical optics.