N-Methyl Costaricine and Costaricine, Two Potent Butyrylcholinesterase Inhibitors from Alseodaphne pendulifolia Gamb.

Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer’s disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver–Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.

[1]  Yuan-Yuan Wang,et al.  Rapid identification of chemical components in vitro and in vivo of Menispermi Rhizoma by integrating UPLC-Q-TOF-MS with data post-processing strategy. , 2023, Phytochemical analysis : PCA.

[2]  M. Litaudon,et al.  Neuroprotective Activities of New Monoterpenoid Indole Alkaloid from Nauclea officinalis , 2023, Processes.

[3]  M. T. dos Santos Correia,et al.  Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H. West ex Willd.) O. Berg fruit peel essential oil , 2020 .

[4]  Jiayuan Li,et al.  Bioactive bisbenzylisoquinoline alkaloids from the roots of Stephania tetrandra. , 2020, Bioorganic chemistry.

[5]  Ali M. El-Hagrassi,et al.  Phenolic profiling and anti-Alzheimer’s evaluation of Eremobium aegyptiacum , 2020, Advances in Traditional Medicine.

[6]  C. Zhan,et al.  Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. , 2019, Bioorganic & medicinal chemistry letters.

[7]  K. Awang,et al.  Molecular Insight and Mode of Inhibition of α‐Glucosidase and α‐Amylase by Pahangensin A from Alpinia pahangensis Ridl. , 2019, Chemistry & biodiversity.

[8]  P. Mishra,et al.  Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer's disease (1998-2018). , 2019, Bioorganic & medicinal chemistry.

[9]  S. Agatonovic-Kustrin,et al.  Essential oils and functional herbs for healthy aging , 2019, Neural regeneration research.

[10]  X. Hao,et al.  Five new alkaloids from Aconitum apetalum (Ranunculaceae) , 2019, Phytochemistry Letters.

[11]  B. Štefane,et al.  Acetylcholinesterase Inhibition and Antioxidant Activity of N-trans-Caffeoyldopamine and N-trans-Feruloyldopamine , 2018, Scientia pharmaceutica.

[12]  Kablan Ahmont Landry Claude,et al.  A new natural indole and three aporphine alkaloids from Monodora bevipes Benth. (Annonaceae) , 2017 .

[13]  M. Litaudon,et al.  Alkaloids from Cryptocarya densiflora Blume (Lauraceae) and their cholinesterase inhibitory activity , 2017 .

[14]  K. Chand,et al.  Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease , 2016 .

[15]  M. Litaudon,et al.  Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). , 2016, Bioorganic & medicinal chemistry.

[16]  M. Litaudon,et al.  Natural cholinesterase inhibitors from Myristica cinnamomea King. , 2016, Bioorganic & medicinal chemistry letters.

[17]  M. Choudhary,et al.  In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. , 2016, Asian Pacific journal of tropical medicine.

[18]  C. Looi,et al.  Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. , 2015, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[19]  A. Henriques,et al.  Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease , 2013, The Journal of pharmacy and pharmacology.

[20]  K. Awang,et al.  Phytochemical Study on Alkaloids From Bark of (Lauraceae) and their Bioactivity , 2013 .

[21]  Zheng-Tao Wang,et al.  Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of β-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum. , 2013 .

[22]  S. Dall’Acqua,et al.  Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer's disease , 2013 .

[23]  Rashmi,et al.  A Review on Genus Alseodaphne: Phytochemistry and Pharmacology , 2012 .

[24]  M. Litaudon,et al.  Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. , 2012, Fitoterapia.

[25]  H. Morita,et al.  α'-oxoperakensimines A-C, new bisbenzylisoquinoline alkaloids from Alseodaphne perakensis (Gamble) Kosterm , 2009 .

[26]  H. Morita,et al.  3',4'-dihydronorstephasubine, a new bisbenzylisoquinoline from the bark of Alseodaphne corneri , 2009 .

[27]  H. Morita,et al.  (+)-N-(2-Hydroxypropyl)lindcarpine: A New Cytotoxic Aporphine Isolated from Actinodaphne pruinosa Nees , 2009, Molecules.

[28]  L. Gan,et al.  A Novel Bisbenzylisoquinoline Alkaloid from Lindera Aggregata , 2008 .

[29]  A. Jäger,et al.  Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. , 2007, Journal of ethnopharmacology.

[30]  N. Greig,et al.  Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent , 2005 .

[31]  J. Toda,et al.  Alkaloidal Constituents of the Tubers of Stephania cepharantha Cultivated in Japan : Structure of 3, 4-Dehydrocycleanine, a New Bisbenzylisoquinoline Alkaloid , 1997 .

[32]  N. Farnsworth,et al.  Costaricine, a new antiplasmodial bisbenzylisoquinoline alkaloid from Nectandra salicifolia trunk bark. , 1996, Journal of natural products.

[33]  F. Tillequin,et al.  Aporphine alkaloids from Lindera myrrha , 1994 .

[34]  A. Jossang,et al.  Alcaloïdes des Annonacées, 66: Alcaloïdes de Popowia pisocarpa, Deuxième Partie: Nouveaux Bisaporphinoïdes , 1986 .

[35]  T. Konoshima,et al.  Aporphine Alkaloids from Parabenzoin praecox (SIEB. et ZUCC.) NAKAI , 1984 .

[36]  R. Manske THE ALKALOIDS OF FUMARACEOUS PLANTS: VII. Dicentra eximia (KER) TORR. , 1933 .

[37]  G. Stafford,et al.  Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer's disease treatment , 2019, South African Journal of Botany.

[38]  L. Rong,et al.  Alkaloids from root tubers of Stephania kwangsiensis H.S.Lo and their effects on proliferation and apoptosis of lung NCI-H446 cells. , 2016 .

[39]  K. Awang,et al.  Hernagine type of Aporphine Alkaloids from Alseodaphne perakensis , 2014 .

[40]  L. Wen The Alkaloids from Leaves of Croton hemiargyerius var. gymnodiscus , 2003 .

[41]  B. S. Joshi,et al.  New alkaloids from Consolida hellespontica , 1993 .

[42]  H. Furukawa,et al.  Short reportHernagine, a new aporphine alkaloid, and 3-cyano-4- methoxypyridine from Hernandia nymphaefolia , 1980 .

[43]  J. Gadamer,et al.  Ueber Corydalisalkaloide , 2022 .