Evolution of Indoor Positioning Technologies: A Survey

Indoor positioning systems (IPS) use sensors and communication technologies to locate objects in indoor environments. IPS are attracting scientific and enterprise interest because there is a big market opportunity for applying these technologies. There are many previous surveys on indoor positioning systems; however, most of them lack a solid classification scheme that would structurally map a wide field such as IPS, or omit several key technologies or have a limited perspective; finally, surveys rapidly become obsolete in an area as dynamic as IPS. The goal of this paper is to provide a technological perspective of indoor positioning systems, comprising a wide range of technologies and approaches. Further, we classify the existing approaches in a structure in order to guide the review and discussion of the different approaches. Finally, we present a comparison of indoor positioning approaches and present the evolution and trends that we foresee.

[1]  Mario Siller,et al.  A Survey of Hybrid Schemes for Location Estimation in Wireless Sensor Networks , 2013 .

[2]  Filip Maly,et al.  Improving Indoor Localization Using Bluetooth Low Energy Beacons , 2016, Mob. Inf. Syst..

[3]  François Marx,et al.  Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning , 2006, EURASIP J. Adv. Signal Process..

[4]  Shih-Hau Fang,et al.  An Enhanced ZigBee Indoor Positioning System With an Ensemble Approach , 2012, IEEE Communications Letters.

[5]  Noboru Babaguchi,et al.  Indoor Positioning System Using Digital Audio Watermarking , 2011, IEICE Trans. Inf. Syst..

[6]  H. Makino,et al.  Design of an Indoor Self-Positioning System for the Visually Impaired - Simulation with RFID and Bluetooth in a Visible Light Communication System , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[7]  Gregers Mogensen,et al.  Experimental investigation of line-of-sight propagation at 13.5ߝ15.0 GHz , 1979 .

[8]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[9]  Binghao Li,et al.  EVALUATION OF WIFI TECHNOLOGIES FOR INDOOR POSITIONING APPLICATIONS , 2009 .

[10]  Francesco Rizzo,et al.  SeSaMoNet: an RFID-based economically viable navigation system for the visually impaired , 2009, Int. J. RF Technol. Res. Appl..

[11]  Ramón F. Brena,et al.  Wifi bluetooth based combined positioning algorithm , 2012 .

[12]  Pete Steggles,et al.  THE UBISENSE SMART SPACE PLATFORM , 2005 .

[13]  Mohammad Syafrudin,et al.  LOSNUS: An ultrasonic system enabling high accuracy and secure TDoA locating of numerous devices , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[14]  Kyandoghere Kyamakya,et al.  An Indoor Bluetooth-Based Positioning System: Concept, Implementation and Experimental Evaluation , 2003, International Conference on Wireless Networks.

[15]  Moustafa Youssef,et al.  CrowdInside: automatic construction of indoor floorplans , 2012, SIGSPATIAL/GIS.

[16]  Y. Jay Guo Advances in Mobile Radio Access Networks , 2004 .

[17]  John Adcock,et al.  Indoor localization using controlled ambient sounds , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[18]  Wenlong Liu,et al.  A Novel Three-Dimensional Indoor Localization Algorithm Based on Multi-Sensors , 2013 .

[19]  Jianxin Wu,et al.  A Dual-Sensor Enabled Indoor Localization System with Crowdsensing Spot Survey , 2014, 2014 IEEE International Conference on Distributed Computing in Sensor Systems.

[20]  Martin Klepal,et al.  Fingerprinting based localisation revisited: A rigorous approach for comparing RSSI measurements coping with missed access points and differing antenna attenuations , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[21]  Sinan Gezici,et al.  A Survey on Wireless Position Estimation , 2008, Wirel. Pers. Commun..

[22]  Robert Harle,et al.  Location Fingerprinting With Bluetooth Low Energy Beacons , 2015, IEEE Journal on Selected Areas in Communications.

[23]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[24]  Chadly Marouane,et al.  Indoor positioning using smartphone camera , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[25]  Dieter Schmalstieg,et al.  Indoor Positioning and Navigation with Camera Phones , 2009, IEEE Pervasive Computing.

[26]  Guobin Shen,et al.  Epsilon: A Visible Light Based Positioning System , 2014, NSDI.

[27]  Yunzhou Zhang,et al.  Indoor Mobile Localization Based on Wi-Fi Fingerprint's Important Access Point , 2015, Int. J. Distributed Sens. Networks.

[28]  A. Rogalski Infrared detectors: an overview , 2002 .

[29]  Andrew Wheeler,et al.  Commercial Applications of Wireless Sensor Networks Using ZigBee , 2007, IEEE Communications Magazine.

[30]  E. Ruiz-Ibarra,et al.  Performance Evaluation of Localization Algorithms for WSNs , 2015, Int. J. Distributed Sens. Networks.

[31]  Helena Leppäkoski,et al.  Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  P Dabove,et al.  Inertial sensors for smartphones navigation , 2015, SpringerPlus.

[33]  Shuang-Hua Yang,et al.  A ZigBee-based mobile tracking system through wireless sensor networks , 2008 .

[34]  Gomes Goncalo,et al.  Indoor Location System Using ZigBee Technology , 2009, 2009 Third International Conference on Sensor Technologies and Applications.

[35]  U.K. Madawala,et al.  Indoor personnel tracking using infrared beam scanning , 2004, PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556).

[36]  A.H. Sayed,et al.  Network-based wireless location: challenges faced in developing techniques for accurate wireless location information , 2005, IEEE Signal Processing Magazine.

[37]  Barry Brumitt,et al.  EasyLiving: Technologies for Intelligent Environments , 2000, HUC.

[38]  K.J.R. Liu,et al.  Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs , 2005, IEEE Signal Processing Magazine.

[39]  R. Mautz Indoor Positioning Technologies , 2012 .

[40]  Haiyong Luo,et al.  Location Fingerprint Extraction for Magnetic Field Magnitude Based Indoor Positioning , 2016, J. Sensors.

[41]  Keon Young Yi,et al.  Development of a Localization System Based on VLC Technique for an Indoor Environment , 2015 .

[42]  Masao Nakagawa,et al.  Fundamental analysis for visible-light communication system using LED lights , 2004, IEEE Transactions on Consumer Electronics.

[43]  Jie Liu,et al.  A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned , 2015, IPSN.

[44]  Feng Zhao,et al.  A reliable and accurate indoor localization method using phone inertial sensors , 2012, UbiComp.

[45]  Tomoaki Ohtsuki,et al.  Localization using iterative angle of arrival method sharing snapshots of coherent subarrays , 2011, EURASIP J. Adv. Signal Process..

[46]  Ron Weinstein,et al.  RFID: a technical overview and its application to the enterprise , 2005, IT Professional.

[47]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[48]  Henry L. Bertoni,et al.  Radio Propagation for Modern Wireless Systems , 1999 .

[49]  Wolfgang Effelsberg,et al.  BluePos: Positioning with Bluetooth , 2009, 2009 IEEE International Symposium on Intelligent Signal Processing.

[50]  Oliver Amft,et al.  LuxTrace: indoor positioning using building illumination , 2007, Personal and Ubiquitous Computing.

[51]  Mario Gerla,et al.  Crowdsource Based Indoor Localization by Uncalibrated Heterogeneous Wi-Fi Devices , 2016, Mob. Inf. Syst..

[52]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[53]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[54]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[55]  Carles Gomez,et al.  Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology , 2012, Sensors.

[56]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[57]  Ramón F. Brena,et al.  Magnetic Field Feature Extraction and Selection for Indoor Location Estimation , 2014, Sensors.

[58]  Nuno Lourenço,et al.  Visible Light Communication Systems Conception and VIDAS , 2008 .

[59]  Hideo Makino,et al.  Basic study on indoor location estimation using Visible Light Communication platform , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[60]  Romit Roy Choudhury,et al.  SurroundSense: mobile phone localization using ambient sound and light , 2009, MOCO.

[61]  Lu Xiaochun,et al.  Research on UWB indoor positioning based on TDOA technique , 2009, 2009 9th International Conference on Electronic Measurement & Instruments.

[62]  Baining Guo,et al.  Kinect Identity: Technology and Experience , 2011, Computer.

[63]  Andy Hopper,et al.  A new location technique for the active office , 1997, IEEE Wirel. Commun..

[64]  Hanan Lutfiyya,et al.  Herecast:an open infrastructure for locationbased services using WiFi , 2005, WiMob'2005), IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, 2005..

[65]  Jianxin Wu,et al.  GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation , 2015, IEEE Transactions on Mobile Computing.

[66]  Ramón F. Brena,et al.  Long-Term Activity Recognition from Accelerometer Data , 2013 .

[67]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[68]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[69]  Hwee-Xian Tan,et al.  CIMLoc: A crowdsourcing indoor digital map construction system for localization , 2014, 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).

[70]  Petteri Alahuhta,et al.  Location Estimation Indoors by Means of Small Computing Power Devices, Accelerometers, Magnetic Sensors, and Map Knowledge , 2002, Pervasive.

[71]  Chatschik Bisdikian,et al.  An overview of the Bluetooth wireless technology , 2001, IEEE Commun. Mag..

[72]  Ram Dantu,et al.  Magnetic Maps for Indoor Navigation , 2011, IEEE Transactions on Instrumentation and Measurement.

[73]  Branimir R. Vojcic,et al.  Ultra wide band wireless communications: A tutorial , 2003, Journal of Communications and Networks.

[74]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[75]  Kevin Curran,et al.  A survey of active and passive indoor localisation systems , 2012, Comput. Commun..

[76]  Shuang-Hua Yang,et al.  A Survey of Indoor Positioning and Object Locating Systems , 2010 .

[77]  Gaetano Borriello Location Sensing Techniques , 2001 .

[78]  Ramón F. Brena,et al.  Infrastructure-Less Indoor Localization Using the Microphone, Magnetometer and Light Sensor of a Smartphone , 2015, Sensors.

[79]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[80]  José Luis Lázaro,et al.  Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces , 2011, Sensors.

[81]  Mohsen Kavehrad,et al.  Asynchronous indoor positioning system based on visible light communications , 2014 .

[82]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[83]  Rajeshwari Chatterjee Antenna theory and practice , 1988 .

[84]  Hanifa Shah,et al.  RFID Applications: An Introductory and Exploratory Study , 2010, ArXiv.

[85]  Ignas Niemegeers,et al.  A survey of indoor positioning systems for wireless personal networks , 2009, IEEE Communications Surveys & Tutorials.

[86]  Jong-Suk Choi,et al.  Advanced indoor localization using ultrasonic sensor and digital compass , 2008, 2008 International Conference on Control, Automation and Systems.

[87]  A. Quigley,et al.  BlueStar, a privacy centric location aware system , 2004, PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556).

[88]  Abdelmoumen Norrdine,et al.  Towards a Decentralized Magnetic Indoor Positioning System , 2015, Sensors.

[89]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[90]  Kyung Sup Kwak,et al.  Applications of UWB Technology , 2009, ArXiv.

[91]  Janne Haverinen,et al.  Global indoor self-localization based on the ambient magnetic field , 2009, Robotics Auton. Syst..

[92]  Klaus Finkenzeller,et al.  Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification , 2003 .

[93]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..