Ultrafast laser inscription: perspectives on future integrated applications

This paper reviews the recent advancements achieved using ultrafast laser inscription (ULI) that highlight the cross-disciplinary potential of the technology. An overview of waveguide fabrication is provided and the three distinct types of waveguide cross-section architectures that have so far been fabricated in transparent dielectric materials are discussed. The paper focuses on two key emergent technologies driven by ULI processes. First, the recently developed photonic devices, such as compact mode-locked waveguide sources and novel mid-infrared waveguide lasers are discussed. Secondly, the phenomenon and applications of selective etching in developing ultrafast laser inscribed structures for compact lab-on-chip devices are elaborated. The review further discusses the conceivable future of ULI in impacting the aforementioned fields.

[1]  Jintian Lin,et al.  Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining , 2011 .

[2]  S. Nolte,et al.  Transmission electron microscopy studies of femtosecond laser induced modifications in quartz , 2003 .

[3]  Jerome Mertz,et al.  Nonlinear microscopy: new techniques and applications , 2004, Current Opinion in Neurobiology.

[4]  Saulius Juodkazis,et al.  Control over the Crystalline State of Sapphire , 2006 .

[5]  Qiying Chen,et al.  Microfabrication and Applications of Opto-Microfluidic Sensors , 2011, Sensors.

[7]  P. Corkum,et al.  Femtosecond laser fabrication of nanostructures in silica glass. , 2003, Optics letters.

[8]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[9]  Stefan Schinkinger,et al.  Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. , 2005, Biophysical journal.

[10]  Cyril Hnatovsky,et al.  Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica , 2005 .

[11]  Roberta Ramponi,et al.  Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. , 2010, Lab on a chip.

[12]  J. Gottmann,et al.  Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[13]  Koji Sugioka,et al.  Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining , 2006 .

[14]  Peter G. Kazansky,et al.  Non-reciprocal ultrafast laser writing , 2008 .

[15]  Feng Chen,et al.  Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides , 2009 .

[16]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[17]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[18]  Günter Huber,et al.  Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser. , 2010, Optics express.

[19]  R. Osellame,et al.  Femtosecond Laser Inscription of Low Insertion Loss Waveguides in $Z$-Cut Lithium Niobate , 2007, IEEE Photonics Technology Letters.

[20]  Koji Sugioka,et al.  Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation. , 2013, Optics Express.

[21]  S. Mirov,et al.  Recent Progress in Transition-Metal-Doped II–VI Mid-IR Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Robert R. Thomson,et al.  Ultrafast Laser Inscription of Photonic Devices in Bulk Dielectrics , 2013 .

[23]  Andreas Tünnermann,et al.  Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™ , 2013 .

[24]  Shigeki Matsuo,et al.  Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser Pulses , 2008 .

[25]  Simon Gross,et al.  Efficient 2.9 μm fluorozirconate glass waveguide chip laser. , 2013, Optics letters.

[26]  Roberta Ramponi,et al.  Femtosecond laser microstructuring for polymeric lab‐on‐chips , 2012, Journal of biophotonics.

[27]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[28]  Koji Sugioka,et al.  Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. , 2004, Optics letters.

[29]  T. Yoko,et al.  Three-Dimensional Microdrilling of Glass by Multiphoton Process and Chemical Etching , 1999 .

[30]  Martin Ams,et al.  Direct laser written waveguide-Bragg gratings in bulk fused silica. , 2006, Optics letters.

[31]  R R Thomson,et al.  Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. , 2010, Optics letters.

[32]  Ian Bennion,et al.  Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. , 2012, Optics express.

[33]  Peter G. Kazansky,et al.  Nano-modification inside transparent materials by femtosecond laser single beam , 2005 .

[34]  Amir H Nejadmalayeri,et al.  Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width. , 2006, Optics letters.

[35]  C. Menyuk,et al.  Understanding leaky modes: slab waveguide revisited , 2009 .

[36]  Kazuyoshi Itoh,et al.  Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. , 2006, Optics express.

[37]  Koji Sugioka,et al.  Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. , 2010, Optics Letters.

[38]  Feng Chen,et al.  Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining , 2014 .

[39]  F. He,et al.  Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. , 2010, Optics letters.

[40]  Huan Huang,et al.  Ultrashort pulsed fiber laser welding and sealing of transparent materials. , 2012, Applied optics.

[41]  M. Hopkinson,et al.  Recent progress in short wavelength quantum cascade lasers , 2011, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[42]  D T Reid,et al.  Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications. , 2011, Optics letters.

[43]  Andreas Tünnermann,et al.  Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology , 2012 .

[44]  Patrick A. Berry,et al.  Widely Tunable Cr:ZnSe Channel Waveguide Laser , 2013 .

[45]  Patrick A. Berry,et al.  Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser , 2013 .

[46]  Martin Ams,et al.  Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. , 2005, Optics express.

[47]  Feng Chen,et al.  Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription. , 2011, Optics express.

[48]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[49]  Claire F. Gmachl,et al.  Mid-infrared quantum cascade lasers , 2012, Nature Photonics.

[50]  Stefano Taccheo,et al.  Femtosecond writing of active optical waveguides with astigmatically shaped beams , 2003 .

[51]  Patrick A. Berry,et al.  Compact mid-infrared Cr:ZnSe channel waveguide laser , 2013 .

[52]  D. A. Contreras-Solorio,et al.  Electronic structure of cubic GaN/AlGaN quantum wells , 2003 .

[53]  Shigeki Matsuo,et al.  Laser Fabrication of Ship-in-a-bottle Microstructures in Sapphire , 2007 .

[54]  K. L. Vodopyanov,et al.  Infrared pulses of 1 picosecond duration tunable between 4 mu m and 18 mu m , 1993 .

[55]  Ksenia A. Fedorova,et al.  InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm , 2013 .

[56]  W Sibbett,et al.  Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers. , 2009, Optics express.

[57]  Peter R. Herman,et al.  Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip. , 2013, Biomedical optics express.

[58]  W Sibbett,et al.  Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide. , 2011, Optics letters.

[59]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[60]  Peter R Herman,et al.  Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. , 2008, Optics express.

[61]  D Y Tang,et al.  Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG. , 2011, Optics letters.

[62]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[63]  Leonard A. Pomeranz,et al.  Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP 2 optical parametric oscillators , 2000 .

[64]  C. Hnatovsky,et al.  Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[65]  Koji Sugioka,et al.  Microstructuring of Photosensitive Glass , 2012 .

[66]  S. Matsuo,et al.  Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates , 2009 .

[67]  M J Withford,et al.  Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser. , 2011, Optics letters.

[68]  Yoshinori Hibino,et al.  Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. , 2005, Optics letters.

[69]  Koji Sugioka,et al.  Femtosecond laser processing for optofluidic fabrication. , 2012, Lab on a chip.

[70]  Saulius Juodkazis,et al.  Surface-texturing of sapphire by femtosecond laser pulses for photonic applications , 2010 .

[71]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[72]  C. Grigoropoulos,et al.  Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. , 2009, Lab on a chip.

[73]  Saulius Juodkazis,et al.  Femtosecond laser assisted etching of quartz: microstructuring from inside , 2006 .

[74]  Adam Lancaster,et al.  Compact Cr:ZnS channel waveguide laser operating at 2,333 nm. , 2014, Optics express.

[75]  Luke R. Wilson,et al.  Improved performance of In0.6Ga0.4As/AlAs0.67Sb0.33/InP quantum cascade lasers by introduction of AlAs barriers in the active regions , 2007 .

[76]  Simon Gross,et al.  High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings. , 2013, Optics express.

[77]  A. Okhrimchuk,et al.  Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing. , 2005, Optics letters.

[78]  Peter Dekker,et al.  Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. , 2008, Optics letters.

[79]  R. Osellame,et al.  Femtosecond laser microstructuring: an enabling tool for optofluidic lab‐on‐chips , 2011 .

[80]  Yves Bellouard,et al.  Laser-based fabrication of microflow cytometers with integrated optical waveguides , 2010 .

[81]  Pierangelo Metrangolo,et al.  Selective Iterative Etching of Fused Silica with Gaseous Hydrofluoric Acid , 2010 .

[82]  Nemanja Jovanovic,et al.  Low bend loss waveguides enable compact, efficient 3D photonic chips. , 2013, Optics express.

[83]  A. Kar,et al.  Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide. , 2012, Optics express.

[84]  P. Corkum,et al.  Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. , 2005, Optics letters.

[85]  P. Corkum,et al.  Optically produced arrays of planar nanostructures inside fused silica. , 2006, Physical review letters.

[86]  R. Taylor,et al.  Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass , 2008 .

[87]  Shigeki Matsuo,et al.  Femtosecond laser-assisted etching of Pyrex glass with aqueous solution of KOH , 2009 .

[88]  Feng Chen,et al.  Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing. , 2012, Optics express.

[89]  W Sibbett,et al.  Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate. , 2012, Optics letters.

[90]  Y. Bellouard,et al.  Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. , 2004, Optics express.

[91]  Robert R. Thomson,et al.  320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber , 2010 .

[92]  A. Fender,et al.  Ultrafast laser inscription of a three dimensional fan-out device for multicore fiber coupling applications , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[93]  M. Littman,et al.  Spectrally narrow pulsed dye laser without beam expander. , 1978, Applied optics.

[94]  Feng Chen,et al.  Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance. , 2012, Optics express.

[95]  Feng Chen,et al.  Mid-infrared waveguide lasers in rare-earth-doped YAG. , 2012, Optics letters.

[96]  Joseph S. Hayden,et al.  Waveguide fabrication in phosphate glasses using femtosecond laser pulses , 2003 .

[97]  A. Fried,et al.  Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection , 2002, Applied physics. B, Lasers and optics.

[98]  Rick Trebino,et al.  Front Matter: Volume 7203 , 2009 .

[99]  Peter R. Herman,et al.  Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers. , 2012, Optics express.

[100]  Andrew G. Glen,et al.  APPL , 2001 .

[101]  Daniel Jaque,et al.  Quantum dot enabled thermal imaging of optofluidic devices. , 2012, Lab on a chip.

[102]  Debaditya Choudhury,et al.  A 3D mammalian cell separator biochip. , 2012, Lab on a chip.

[103]  D. Findlay,et al.  The measurement of internal losses in 4-level lasers , 1966 .

[104]  Daniel Jaque,et al.  Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications , 2013 .

[105]  K. Vodopyanov,et al.  Solid-state mid-infrared laser sources , 2003 .

[106]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[107]  Zhipei Sun,et al.  1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler. , 2012, Optics express.

[108]  Tsuneo Mitsuyu,et al.  Three-Dimensional Microscopic Crystallization in Photosensitive Glass by Femtosecond Laser Pulses at Nonresonant Wavelength , 1998 .

[109]  Graeme Brown,et al.  Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique. , 2012, Optics letters.

[110]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[111]  Kevin Ke,et al.  Ultrafast laser fabrication of submicrometer pores in borosilicate glass. , 2008, Optics letters.

[112]  Gianluca Galzerano,et al.  Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser , 2006 .

[113]  R Mary,et al.  Compact, highly efficient ytterbium doped bismuthate glass waveguide laser. , 2012, Optics letters.

[114]  Jeremy Allington-Smith,et al.  Ultrafast laser inscription: an enabling technology for astrophotonics. , 2009, Optics express.

[115]  Quan-Zhong Zhao,et al.  Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core. , 2013, Optics express.

[116]  R. Osellame,et al.  Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. , 2010, Optics express.

[117]  A. Ferrari,et al.  Ultrafast lasers mode-locked by nanotubes and graphene , 2012 .

[118]  M. P. Moreno,et al.  Femtosecond 1 GHz Ti:sapphire laser as a tool for coherent spectroscopy in atomic vapor , 2011 .

[119]  Qing Yang,et al.  Process for the fabrication of complex three-dimensional microcoils in fused silica. , 2013, Optics letters.

[120]  Simon Gross,et al.  Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN. , 2012, Optics letters.

[121]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[122]  Abraham P. Lee,et al.  Microfluidic Droplet Manipulations and Their Applications , 2012 .

[123]  Ya Cheng,et al.  On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. , 2011, Optics express.

[124]  Hiroshi Masuhara,et al.  Laser microfabrication and rotation of ship-in-a-bottle optical rotators , 2008 .

[125]  Jason R. Grenier,et al.  Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel. , 2009, Optics express.

[126]  R. Osellame,et al.  Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. , 2009, Optics express.