Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests

[1]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[2]  G. Pharr,et al.  A numerical approach to spherical indentation techniques for material property evaluation , 2005 .

[3]  Berthold Scholtes,et al.  Effect of Applied and Residual Stresses on the Analysis of Mechanical Properties by Means of Instrumented Indentation Techniques , 2005 .

[4]  S. Reese,et al.  On the theoretical and numerical modelling of Armstrong–Frederick kinematic hardening in the finite strain regime , 2004 .

[5]  S. Hartmann,et al.  Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements , 2003 .

[6]  John G Swadener,et al.  Measurement of residual stress by load and depth sensing indentation with spherical indenters , 2001 .

[7]  Stefan Hartmann,et al.  Remarks on the interpretation of current non‐linear finite element analyses as differential–algebraic equations , 2001, International Journal for Numerical Methods in Engineering.

[8]  Subra Suresh,et al.  DETERMINATION OF ELASTO-PLASTIC PROPERTIES BY INSTRUMENTED SHARP INDENTATION: GUIDELINES FOR PROPERTY EXTRACTION , 2000 .

[9]  C. Tsakmakis,et al.  Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules , 2000 .

[10]  Peter Haupt,et al.  Continuum Mechanics and Theory of Materials , 1999 .

[11]  Ch. Tsakmakis,et al.  Determination of constitutive properties fromspherical indentation data using neural networks. Part i:the case of pure kinematic hardening in plasticity laws , 1999 .

[12]  Ch. Tsakmakis,et al.  Determination of constitutive properties fromspherical indentation data using neural networks. Part ii:plasticity with nonlinear isotropic and kinematichardening , 1999 .

[13]  F. Kosel,et al.  New analytical procedure to determine stress-strain curve from spherical indentation data , 1998 .

[14]  Subra Suresh,et al.  A new method for estimating residual stresses by instrumented sharp indentation , 1998 .

[15]  R. Kreißig Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze , 1998 .

[16]  Ch. Tsakmakis,et al.  A Finite Element Analysis of the Effect of Hardening Rules on the Indentation Test , 1998 .

[17]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[18]  Rolf Mahnken,et al.  Parameter identification for finite deformation elasto-plasticity in principal directions , 1997 .

[19]  Stefan Hartmann,et al.  On the numerical treatment of finite deformations in elastoviscoplasticity , 1997 .

[20]  S. Hartmann,et al.  AN EFFICIENT STRESS ALGORITHM WITH APPLICATIONS IN VISCOPLASTICITY AND PLASTICITY , 1997 .

[21]  Rolf Mahnken,et al.  A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .

[22]  C. Tsakmakis Original ArticleKinematic hardening rules in finite plasticity Part I: A constitutive approach , 1996 .

[23]  Jean-Claude Gelin,et al.  An inverse solution procedure for material parameters identification in large plastic deformations , 1996 .

[24]  A. Lion,et al.  Experimental identification and mathematical modeling of viscoplastic material behavior , 1995 .

[25]  Michael V. Swain,et al.  Determining the mechanical properties of small volumes of material from submicrometer spherical indentations , 1995 .

[26]  S. Hartmann Lösung von Randwertaufgaben der Elastoplastizität , 1993 .

[27]  P. Haupt,et al.  On the mathematical modelling of material behavior in continuum mechanics , 1993 .

[28]  Jean-Louis Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[29]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept , 1983 .

[30]  C. Tsakmakis,et al.  Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules , 2000 .

[31]  Harald Laemmer Thermoplastizität und Thermoviskoplastizität mit Schädigung bei kleinen und großen Deformationen , 1998 .

[32]  D. Dengel,et al.  Klassische Werkstoffkennwerte abschätzen : Erweiterte Anwendungsmöglichkeiten der Universalhärteprüfung , 1996 .

[33]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[34]  Susana Gomez,et al.  Advances in Optimization and Numerical Analysis , 1994 .

[35]  C. Tsakmakis,et al.  On the Thermodynamics of Rate-Independent Plasticity as an Asymptotic Limit of Viscoplasticity for Slow Processes , 1992 .