Exotic Bayesian Optimization

[1]  Céline Helbert,et al.  Gaussian process optimization with failures: classification and convergence proof , 2020, Journal of Global Optimization.

[2]  Xuan Zeng,et al.  An Efficient Multi-fidelity Bayesian Optimization Approach for Analog Circuit Synthesis , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[3]  Francesco Archetti,et al.  Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization , 2019, Comput. Oper. Res..

[4]  Francesco Archetti,et al.  Optimizing Partially Defined Black-Box Functions Under Unknown Constraints via Sequential Model Based Optimization: An Application to Pump Scheduling Optimization in Water Distribution Networks , 2019, LION.

[5]  A. Zilinskas,et al.  On efficiency of bicriteria optimization , 2019 .

[6]  Francesco Archetti,et al.  Sequential model based optimization with black-box constraints: Feasibility determination via machine learning , 2019 .

[7]  Guilherme Ottoni,et al.  Constrained Bayesian Optimization with Noisy Experiments , 2017, Bayesian Analysis.

[8]  Hao Huang,et al.  STOCHASTIC OPTIMIZATION FOR FEASIBILITY DETERMINATION: AN APPLICATION TO WATER PUMP OPERATION IN WATER DISTRIBUTION NETWORK , 2018, 2018 Winter Simulation Conference (WSC).

[9]  Douglas Allaire,et al.  Multi-information source constrained Bayesian optimization , 2018, Structural and Multidisciplinary Optimization.

[10]  P. Frazier Bayesian Optimization , 2018, Hyperparameter Optimization in Machine Learning.

[11]  Kirthevasan Kandasamy,et al.  Multi-Fidelity Black-Box Optimization with Hierarchical Partitions , 2018, ICML.

[12]  Régis Duvigneau,et al.  A classification approach to efficient global optimization in presence of non-computable domains , 2018 .

[13]  Hao Huang,et al.  Multi-fidelity simulation optimization with level set approximation using probabilistic branch and bound , 2017, 2017 Winter Simulation Conference (WSC).

[14]  Yaroslav D. Sergeyev,et al.  Deterministic Global Optimization: An Introduction to the Diagonal Approach , 2017 .

[15]  Kirthevasan Kandasamy,et al.  Multi-fidelity Bayesian Optimisation with Continuous Approximations , 2017, ICML.

[16]  Aaron Klein,et al.  Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets , 2016, AISTATS.

[17]  Matthias Poloczek,et al.  Multi-Information Source Optimization , 2016, NIPS.

[18]  Julien Bect,et al.  A Bayesian approach to constrained single- and multi-objective optimization , 2015, Journal of Global Optimization.

[19]  Yaroslav D. Sergeyev,et al.  Deterministic Global Optimization , 2017 .

[20]  Peter I. Frazier,et al.  The Parallel Knowledge Gradient Method for Batch Bayesian Optimization , 2016, NIPS.

[21]  Victor Picheny,et al.  Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian , 2016, NIPS.

[22]  G. Karniadakis,et al.  Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond , 2016, Journal of The Royal Society Interface.

[23]  Sébastien Le Digabel,et al.  Modeling an Augmented Lagrangian for Blackbox Constrained Optimization , 2014, Technometrics.

[24]  Alkis Gotovos,et al.  Safe Exploration for Optimization with Gaussian Processes , 2015, ICML.

[25]  Bernd Bischl,et al.  Model-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark , 2015, EMO.

[26]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Bayesian Optimization with Unknown Constraints , 2015, ICML.

[27]  A. Basudhar,et al.  Constrained efficient global optimization with support vector machines , 2012, Structural and Multidisciplinary Optimization.

[28]  Robert B. Gramacy,et al.  Optimization Under Unknown Constraints , 2010, 1004.4027.

[29]  D. Ginsbourger,et al.  Dealing with asynchronicity in parallel Gaussian Process based global optimization , 2010 .

[30]  D. Ginsbourger,et al.  A Multi-points Criterion for Deterministic Parallel Global Optimization based on Gaussian Processes , 2008 .

[31]  M. Emmerich,et al.  The computation of the expected improvement in dominated hypervolume of Pareto front approximations , 2008 .

[32]  Yaroslav D. Sergeyev,et al.  A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints , 2007, Optim. Lett..

[33]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[34]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[35]  L. Rudenko Objective functional approximation in a partially defined optimization problem , 1994 .