Femtosecond and picosecond dynamics of recombinant bacteriorhodopsin primary reactions compared to the native protein in trimeric and monomeric forms

[1]  B. Adamson,et al.  Photoisomerization action spectrum of retinal protonated Schiff base in the gas phase. , 2014, The Journal of chemical physics.

[2]  P. Hegemann,et al.  Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms , 2013, Chemical reviews.

[3]  M. Sakurai,et al.  Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift , 2012, Biophysics.

[4]  R. Woody,et al.  The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin. , 2012, The journal of physical chemistry. B.

[5]  M. Sheves,et al.  Ultrafast photochemistry of light-adapted and dark-adapted bacteriorhodopsin: effects of the initial retinal configuration. , 2012, The journal of physical chemistry. B.

[6]  V. Shuvalov,et al.  Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. , 2010, Biochimica et biophysica acta.

[7]  S. Haacke,et al.  Ultrafast photo-induced reaction dynamics in bacteriorhodopsin and its Trp mutants , 2010 .

[8]  T. N. Simonova,et al.  A new hybrid protein for production of recombinant bacteriorhodopsin in Escherichia coli. , 2010, Journal of biotechnology.

[9]  Atsushi Yabushita,et al.  Primary conformation change in bacteriorhodopsin on photoexcitation. , 2009, Biophysical journal.

[10]  M. El-Sayed,et al.  Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. , 2002, Biophysical journal.

[11]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[12]  Takashi Saito,et al.  Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization , 2001, Nature.

[13]  M. El-Sayed,et al.  Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin. , 2001, Biophysical journal.

[14]  J. Lanyi,et al.  Progress toward an explicit mechanistic model for the light‐driven pump, bacteriorhodopsin , 1999, FEBS letters.

[15]  Karl Edman,et al.  High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle , 1999, Nature.

[16]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[17]  E. Querol,et al.  Opening the Schiff base moiety of bacteriorhodopsin by mutation of the four extracellular Glu side chains , 1999, FEBS letters.

[18]  M. Sheves,et al.  On the Nature of the Primary Light-Induced Events in Bacteriorhodopsin: Ultrafast Spectroscopy of Native and C13=C14 Locked Pigments , 1999 .

[19]  P. Anfinrud,et al.  Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. , 1998, Science.

[20]  Csilla Gergely,et al.  Bacteriorhodopsin intermediate spectra determined over a wide pH range , 1997 .

[21]  Dieter Oesterhelt,et al.  Femtosecond spectroscopy of the photoisomerisation of the protonated Schiff base of all-trans retinal , 1996 .

[22]  M. El-Sayed,et al.  RETINAL ISOMER COMPOSITION IN SOME BACTERIORHODOPSIN MUTANTS UNDER LIGHT AND DARK ADAPTATION CONDITIONS , 1995 .

[23]  S. Subramaniam,et al.  Hydrophobic amino acids in the retinal-binding pocket of bacteriorhodopsin. , 1993, The Journal of biological chemistry.

[24]  M. El-Sayed,et al.  Protein Catalysis of the Retinal Subpicosecond Photoisomerization in the Primary Process of Bacteriorhodopsin Photosynthesis , 1993, Science.

[25]  H. Khorana,et al.  Mechanism of light-dependent proton translocation by bacteriorhodopsin , 1993, Journal of bacteriology.

[26]  J. Lanyi,et al.  Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. , 1991, Biochemistry.

[27]  J. Lanyi,et al.  Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. , 1991, Biochemistry.

[28]  T. Thorgeirsson,et al.  Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin. , 1991, Biochemistry.

[29]  T G Ebrey,et al.  Quantum efficiency of the photochemical cycle of bacteriorhodopsin. , 1990, Biophysical journal.

[30]  F. Goñi,et al.  The interaction of Triton X-100 with purple membrane: Effect of light-dark adaptation , 1990 .

[31]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[32]  W. Stoeckenius,et al.  Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers. , 1989, Biochemistry.

[33]  H. Khorana,et al.  Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. , 1988, The Journal of biological chemistry.

[34]  C. H. Brito Cruz,et al.  Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. , 1988, Science.

[35]  Wolfgang Kaiser,et al.  Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy , 1988 .

[36]  H. Khorana,et al.  Structure-function studies on bacteriorhodopsin. IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Escherichia coli. , 1987, The Journal of biological chemistry.

[37]  J. Schwemer,et al.  AN IMPROVED HPLC METHOD FOR THE SEPARATION OF RETINALDEHYDE ISOMERS FROM VISUAL PIGMENTS , 1987, Photochemistry and photobiology.

[38]  S. Chekalin,et al.  Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy , 1985 .

[39]  L. A. Drachev,et al.  Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin , 1984 .

[40]  A. Kaulen,et al.  THE INWARD H+ PATHWAY IN BACTERIORHODOPSIN: THE ROLE OF M412 AND P(N)560 INTERMEDIATES* , 1984 .

[41]  N. Dencher,et al.  Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments. , 1983, Biochemistry.

[42]  R. Henderson,et al.  Crystallization of purple membrane in three dimensions. , 1980, Journal of molecular biology.

[43]  T. Ebrey,et al.  Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin. , 1980, Biophysical journal.

[44]  R. Casadio,et al.  Light-dark adaptation of bacteriorhodopsin in triton-treated purple membrane. , 1980, Biochimica et biophysica acta.

[45]  N. Dencher,et al.  Formation and properties of bacteriorhodopsin monomers in the non‐ionic detergents octyl‐β‐D‐glucoside and triton X‐100 , 1978 .

[46]  D. Oesterhelt,et al.  Quantitative aspects of energy conversion in halobacteria , 1977, FEBS letters.

[47]  W. Stoeckenius,et al.  Molecular weight of bacteriorhodopsin solubilized in Triton X-100. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W. Stoeckenius,et al.  Light-driven proton translocations in Halobacterium halobium. , 1976, Biochimica et biophysica acta.

[49]  W. Stoeckenius,et al.  Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. , 1975, Biophysical journal.

[50]  N. Tanaka,et al.  A method for detecting myocardial abnormality by using a total current-vector calculated from ST-segment deviation of a magnetocardiogram signal , 2006, Medical and Biological Engineering and Computing.

[51]  G. Varo,et al.  DARK ADAPTATION AND SPECTRAL CHANGES IN TRITON-X-100-TREATED BACTERIORHODOPSIN , 1995 .

[52]  H. Khorana,et al.  Structure and thermal stability of monomeric bacteriorhodopsin in mixed pospholipid/detergent micelles , 1989, Proteins.

[53]  N. Dencher,et al.  [2] Preparation and properties of monomeric bacteriorhodopsin , 1982 .

[54]  A. ReynoldsJ,et al.  Triton X‐100に溶解したバクテリオロドプシンの分子量 , 1977 .

[55]  D. Oesterhelt,et al.  Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. , 1974, Methods in enzymology.