Grad and classes with bounded expansion II. Algorithmic aspects
暂无分享,去创建一个
[1] Robin Thomas,et al. A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.
[2] Jaroslav Nesetril,et al. Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..
[3] David Eppstein,et al. The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.
[4] Alejandro A. Schäffer,et al. Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..
[5] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.
[6] Satish Rao,et al. Shallow excluded minors and improved graph decompositions , 1994, SODA '94.
[7] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[8] Jaroslav Nesetril,et al. Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..
[9] Bruno Courcelle,et al. Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[10] DEPARTMENT OF APPLIED MATHEMATICS , 2005 .
[11] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[12] Marek Chrobak,et al. Planar Orientations with Low Out-degree and Compaction of Adjacency Matrices , 1991, Theor. Comput. Sci..
[13] Svatopluk Poljak,et al. On the complexity of the subgraph problem , 1985 .
[14] John R Gilbert,et al. A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.
[15] Jaroslav Nešetřil,et al. Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity , 1992 .
[16] David Eppstein. Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.
[17] Paul D. Seymour,et al. Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.
[18] Jitender S. Deogun,et al. On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.
[19] Robert E. Tarjan,et al. Gauss Codes, Planar Hamiltonian Graphs, and Stack-Sortable Permutations , 1984, J. Algorithms.
[20] B. Mohar,et al. Graph Minors , 2009 .
[21] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[22] Jaroslav Nesetril,et al. Grad and classes with bounded expansion III. Restricted graph homomorphism dualities , 2008, Eur. J. Comb..
[23] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[24] Bernd Voigt,et al. Finding Minimally Weighted Subgraphs , 1991, WG.
[25] Jaroslav Nesetril,et al. The Grad of a Graph and Classes with Bounded Expansion , 2005, Electron. Notes Discret. Math..
[26] S. Vavasis,et al. Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..
[27] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[28] L. S. Mel'nikov,et al. On Bounds of the Bisection Width of Cubic Graphs , 1992 .
[29] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[30] J. Nesetril,et al. Grad and classes with bounded expansion III. restricted dualities , 2005, math/0508325.
[31] R. Halin. S-functions for graphs , 1976 .
[32] Noga Alon,et al. Color-coding , 1995, JACM.
[33] Bruce A. Reed,et al. Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.
[34] Shang-Hua Teng,et al. Combinatorial aspects of geometric graphs , 1998, Comput. Geom..
[35] Jaroslav Nesetril,et al. Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.