Defining the nutritional input for genome-scale metabolic models: A roadmap

The reconstruction and application of genome-scale metabolic network models is a central topic in the field of systems biology with numerous applications in biotechnology, ecology, and medicine. However, there is no agreed upon standard for the definition of the nutritional environment for these models. The objective of this article is to provide a guideline and a clear paradigm on how to translate nutritional information into an in-silico representation of the chemical environment. Step-by-step procedures explain how to characterise and categorise the nutritional input and to successfully apply it to constraint-based metabolic models. In parallel, we illustrate the proposed procedure with a case study of the growth of Escherichia coli in a complex nutritional medium and show that an accurate representation of the medium is crucial for physiological predictions. The proposed framework will assist researchers to expand their existing metabolic models of their microbial systems of interest with detailed representations of the nutritional environment, which allows more accurate and reproducible predictions of microbial metabolic processes.

[1]  Martin J. Lercher,et al.  sybil – Efficient constraint-based modelling in R , 2013, BMC Systems Biology.

[2]  J. W. Campbell,et al.  Growth of Escherichia coli MG1655 on LB medium: determining metabolic strategy with transcriptional microarrays , 2006, Applied Microbiology and Biotechnology.

[3]  R. Proctor,et al.  Cultivation conditions and the diffusion of oxygen into culture media: The rationale for the flask-to-medium ratio in microbiology , 2013, BMC Microbiology.

[4]  Johannes Zimmermann,et al.  BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities , 2017, PLoS Comput. Biol..

[5]  Evan Bolton,et al.  PubChem 2019 update: improved access to chemical data , 2018, Nucleic Acids Res..

[6]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[7]  Nathaniel J Szewczyk,et al.  Chemically defined medium and Caenorhabditis elegans , 2003, BMC biotechnology.

[8]  Omid Zarei,et al.  A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media , 2016, Iranian journal of pharmaceutical research : IJPR.

[9]  Anne Richelle,et al.  Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 , 2019, Nature Protocols.

[10]  Daniel C. Zielinski,et al.  Recon3D enables a three-dimensional view of gene variation in human metabolism , 2018 .

[11]  Tatsuma Yao,et al.  Animal‐cell culture media: History, characteristics, and current issues , 2017, Reproductive medicine and biology.

[12]  Partho Sen,et al.  Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. , 2015, Cell metabolism.

[13]  U. Sauer,et al.  High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. , 2004, Analytical biochemistry.

[14]  Peter D. Karp,et al.  How accurate is automated gap filling of metabolic models? , 2018, BMC Systems Biology.

[15]  Ralf Schmidt,et al.  Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions , 2015, Bioinform..

[16]  J. Geiselmann,et al.  Understanding carbon catabolite repression in Escherichia coli using quantitative models. , 2015, Trends in microbiology.

[17]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[18]  Thomas Bernard,et al.  MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks , 2013, Bioinform..

[19]  C. Kaleta,et al.  Gut dysbiosis with Bacilli dominance and accumulation of fermentation products precedes late-onset sepsis in preterm infants. , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  J. Raes,et al.  Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients with Inflammatory Bowel Diseases. , 2019, Gastroenterology.

[21]  F. Ghishan,et al.  Physiology of Intestinal Absorption and Secretion. , 2016, Best practice & research. Clinical gastroenterology.

[22]  Rick L. Stevens,et al.  KBase: The United States Department of Energy Systems Biology Knowledgebase , 2018, Nature Biotechnology.

[23]  Cheng Zhang,et al.  Applications of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine , 2016, Front. Physiol..

[24]  Griffin M. Weber,et al.  BioNumbers—the database of key numbers in molecular and cell biology , 2009, Nucleic Acids Res..

[25]  Thomas Bernard,et al.  Reconciliation of metabolites and biochemical reactions for metabolic networks , 2012, Briefings Bioinform..

[26]  Bas Teusink,et al.  Basic concepts and principles of stoichiometric modeling of metabolic networks , 2013, Biotechnology journal.

[27]  Partho Sen,et al.  Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview , 2019, Metabolites.

[28]  Eugen Bauer,et al.  From metagenomic data to personalized in silico microbiotas: predicting dietary supplements for Crohn’s disease , 2018, npj Systems Biology and Applications.

[29]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[30]  J. Salojärvi,et al.  Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men , 2014, The ISME Journal.

[31]  Michael R Hamblin,et al.  Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella , 2013, BMC Microbiology.

[32]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[33]  M. Medina,et al.  EFFECTS OF SUGAR ADDITION IN LURIA BERTANI (LB) MEDIA ON ESCHERICHIA COLI O157:H7 , 2011 .

[34]  Bas Teusink,et al.  Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model* , 2006, Journal of Biological Chemistry.

[35]  R. Mendel,et al.  Cell biology of molybdenum in plants and humans. , 2012, Biochimica et biophysica acta.

[36]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[37]  Gabriel Gelius-Dietrich R Interface to C API of GLPK , 2015 .

[38]  Ines Thiele,et al.  Modeling metabolism of the human gut microbiome. , 2018, Current opinion in biotechnology.

[39]  U. Sauer,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[40]  Olivier Martin,et al.  MetaNetX/MNXref – reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks , 2015, Nucleic Acids Res..

[41]  Sareen S. Gropper,et al.  Advanced Nutrition and Human Metabolism , 1990 .

[42]  D. Esser,et al.  Functions of the Microbiota for the Physiology of Animal Metaorganisms , 2018, Journal of Innate Immunity.

[43]  K. Bryson,et al.  Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy , 2019, Cell.

[44]  Jeffrey D. Orth,et al.  Systematizing the generation of missing metabolic knowledge , 2010, Biotechnology and bioengineering.

[45]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[46]  Keng C. Soh,et al.  Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. , 2013, Biotechnology journal.

[47]  P. Fürst,et al.  Measurement of free amino acids in human biological fluids by high-performance liquid chromatography. , 1984, Journal of chromatography.

[48]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[49]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[50]  B. Palsson,et al.  Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates , 1993, Applied and environmental microbiology.

[51]  C. Cruz-Hernandez,et al.  Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. , 2013, British journal of clinical pharmacology.

[52]  M. MacWilliams,et al.  Luria Broth (LB) and Luria Agar (LA) Media and Their Uses Protocol , 2006 .

[53]  Tomer Shlomi,et al.  Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters , 2012, PLoS Comput. Biol..

[54]  Yonghong Wang,et al.  Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans , 2016, Applied Microbiology and Biotechnology.

[55]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[56]  A. Wolfe,et al.  Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids , 1994, Journal of bacteriology.

[57]  Neema Jamshidi,et al.  Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. , 2010, Biophysical journal.

[58]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[59]  Ronan M. T. Fleming,et al.  Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. , 2010, EcoSal Plus.

[60]  B. Teusink,et al.  Understanding the physiology of Lactobacillus plantarum at zero growth , 2010, Molecular systems biology.

[61]  G. Sezonov,et al.  Escherichia coli Physiology in Luria-Bertani Broth , 2007, Journal of bacteriology.

[62]  Werner Christian Simons Ernährung des Menschen , 1960 .

[63]  David A. Fell,et al.  Detection of stoichiometric inconsistencies in biomolecular models , 2008, Bioinform..

[64]  Ronan M. T. Fleming,et al.  DistributedFBA.jl: high‐level, high‐performance flux balance analysis in Julia , 2017, Bioinform..

[65]  C. Grant,et al.  MINOR ELEMENT COMPOSITION OF YEAST EXTRACT , 1962, Journal of bacteriology.

[66]  A. Trautwein,et al.  Main components of iron metabolism in microbial systems — Analyzed by in vivo Mössbauer spectroscopy , 1992 .

[67]  Juho Rousu,et al.  Computational methods for metabolic reconstruction. , 2010, Current opinion in biotechnology.

[68]  Ronan M. T. Fleming,et al.  fastGapFill: efficient gap filling in metabolic networks , 2014, Bioinform..

[69]  Andrus Seiman,et al.  Model-based metabolism design: constraints for kinetic and stoichiometric models , 2018, Biochemical Society transactions.

[70]  Susana Martínez Arbas,et al.  Using metabolic networks to resolve ecological properties of microbiomes , 2018 .

[71]  Z. D. Blount,et al.  The unexhausted potential of E. coli , 2015, eLife.

[72]  C. Hunt,et al.  Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: concentrations in common western foods and estimated daily intakes by infants; toddlers; and male and female adolescents, adults, and seniors in the United States. , 2001, Journal of the American Dietetic Association.