A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations

Abstract This paper is concerned with developing a medius error analysis for several nonconforming virtual element methods (VEMs) for the Poisson equation and the biharmonic equation in two dimensions, with the family of polygonal meshes satisfying a very general geometric assumption given in Brezzi et al. (2009) and Chen and Huang (2018). After some technical derivation, the inverse inequalities and norm equivalence are derived for some conforming VEMs. With the help of these results and following some ideas in Gudi (2010), we obtain medius error estimates for the nonconforming VEMs under discussion, which are optimal up to the regularity of the weak solution. Such estimates also imply that the nonconforming VEMs are convergent even if the exact solution only belongs to the admissible space while the right-hand side of the related equation has some additional regularity.

[1]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[2]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[3]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[7]  S. C. Brenner,et al.  Poincaré–Friedrichs Inequalities for Piecewise H 2 Functions , 2004 .

[8]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[9]  Ming Wang,et al.  Minimal finite element spaces for 2m-th-order partial differential equations in Rn , 2012, Math. Comput..

[10]  Lorenzo Mascotto,et al.  Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.

[11]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[12]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[13]  Jianguo Huang,et al.  Some error analysis on virtual element methods , 2017, 1708.08558.

[14]  Carsten Carstensen,et al.  Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem , 2016 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[17]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[18]  Ilaria Perugia,et al.  Non-conforming Harmonic Virtual Element Method: $$h$$h- and $$p$$p-Versions , 2018, J. Sci. Comput..

[19]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[20]  Shipeng Mao,et al.  On the error bounds of nonconforming finite elements , 2010 .

[21]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[22]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[23]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[24]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[25]  Shaochun Chen,et al.  The Morley-Type Virtual Element for Plate Bending Problems , 2018, J. Sci. Comput..

[26]  Rui Ma,et al.  A new a priori error estimate of nonconforming finite element methods , 2014 .

[27]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[28]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[29]  Long Chen,et al.  Nonconforming Virtual Element Method for 2mth Order Partial Differential Equations in ℝn , 2018, Math. Comput..

[30]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[31]  J. Douglas,et al.  A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .

[32]  C. Carstensen,et al.  Medius analysis and comparison results for first-order finite element methods in linear elasticity , 2015 .

[33]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[34]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[35]  Hans Rudolf Schwarz,et al.  Finite Element Methods , 1988 .

[36]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .