PPARs and the complex journey to obesity

Obesity and the related disorders of dyslipidemia and diabetes (components of syndrome X) have become global health epidemics. Over the past decade, the elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three 'lipid-sensing' peroxisome proliferator–activated receptors (PPAR-α, PPAR-γ and PPAR-δ) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bona fide therapeutic targets. With molecular underpinnings now in place, new pharmacologic approaches to metabolic disease and new questions are emerging.

[1]  M. Reitman,et al.  Peroxisome proliferator-activated receptor-alpha agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. , 2003, Diabetes.

[2]  Matthias Blüher,et al.  Extended Longevity in Mice Lacking the Insulin Receptor in Adipose Tissue , 2003, Science.

[3]  P. Puigserver,et al.  A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis , 1998, Cell.

[4]  D. Smith,et al.  A role for glucagon-like peptide-1 in the central regulation of feeding , 1996, Nature.

[5]  J. G. Alvarez,et al.  Activators of the nuclear receptor PPARγ enhance colon polyp formation , 1998, Nature Medicine.

[6]  A. Garg,et al.  A Novel Heterozygous Mutation in Peroxisome Proliferator-Activated Receptor-γ Gene in a Patient with Familial Partial Lipodystrophy , 2002 .

[7]  Rajnish A. Gupta,et al.  Activation of nuclear hormone receptor peroxisome proliferator–activated receptor-δ accelerates intestinal adenoma growth , 2004, Nature Medicine.

[8]  L. Tartaglia,et al.  Cloning and Characterization of an Uncoupling Protein Homolog: A Potential Molecular Mediator of Human Thermogenesis , 1997, Diabetes.

[9]  B. Spiegelman,et al.  Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor , 1994, Cell.

[10]  M. Maffei,et al.  Positional cloning of the mouse obese gene and its human homologue , 1994, Nature.

[11]  T. Yagi,et al.  Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 , 1994, Nature.

[12]  C. Kahn,et al.  Tissue-Specific Knockout of the Insulin Receptor in Pancreatic β Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes , 1999, Cell.

[13]  Christine Dreyer,et al.  Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors , 1992, Cell.

[14]  R. Hegele,et al.  PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. , 2002, Diabetes.

[15]  S. Kliewer,et al.  A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Kahn,et al.  A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. , 1998, Molecular cell.

[17]  A. Wolffe,et al.  Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. , 1999, Journal of molecular endocrinology.

[18]  B. Spiegelman,et al.  Cross-Regulation of C/EBPα and PPARγ Controls the Transcriptional Pathway of Adipogenesis and Insulin Sensitivity , 1999 .

[19]  L. Rossetti,et al.  Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. , 2001, The Journal of clinical investigation.

[20]  L. Rossetti,et al.  Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. , 2003, The Journal of clinical investigation.

[21]  Jourdan J. Pouliot,et al.  development and , 2019 .

[22]  J. Lehmann,et al.  Orphan nuclear receptors: shifting endocrinology into reverse. , 1999, Science.

[23]  J. Levine,et al.  Role of nonexercise activity thermogenesis in resistance to fat gain in humans. , 1999, Science.

[24]  P. Puigserver,et al.  Transcriptional regulation of adipogenesis. , 2000, Genes & development.

[25]  P. Scifo,et al.  Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. , 1999, Diabetes.

[26]  G. Shulman,et al.  On Diabetes: Insulin Resistance Cellular Mechanisms of Insulin Resistance , 2022 .

[27]  G. Shulman,et al.  Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. , 2001, Genes & development.

[28]  Peter Olson,et al.  Printed in U.S.A. Copyright © 2003 by The Endocrine Society doi: 10.1210/en.2003-0288 Minireview: Lipid Metabolism, Metabolic Diseases, and , 2022 .

[29]  M. Bucan,et al.  A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. , 2001, Molecular cell.

[30]  M. Reitman,et al.  Liver Peroxisome Proliferator-activated Receptor γ Contributes to Hepatic Steatosis, Triglyceride Clearance, and Regulation of Body Fat Mass* , 2003, Journal of Biological Chemistry.

[31]  J. Ward,et al.  Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor β(δ) , 2000, Molecular and Cellular Biology.

[32]  C. Kahn,et al.  Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein , 1991, Nature.

[33]  Satoshi Tanaka,et al.  PPARγ Mediates High-Fat Diet–Induced Adipocyte Hypertrophy and Insulin Resistance , 1999 .

[34]  StevenHaffner,et al.  Epidemic Obesity and the Metabolic Syndrome , 2003 .

[35]  B. Miroux,et al.  Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production , 2000, Nature Genetics.

[36]  Douglas L. Rothman,et al.  Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance , 2003, Science.

[37]  G. Muscat,et al.  The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. , 2003, Molecular endocrinology.

[38]  D L Rothman,et al.  Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. , 1999, The Journal of clinical investigation.

[39]  B. Spiegelman,et al.  Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. , 1997, The Journal of clinical investigation.

[40]  B. Spiegelman,et al.  Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. , 2003, The Journal of clinical investigation.

[41]  G. Shulman,et al.  Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle* , 2002, The Journal of Biological Chemistry.

[42]  G. Shulman,et al.  Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Kahn,et al.  Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. , 2000, Molecular cell.

[44]  S. Uchida,et al.  Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase , 2002, Nature Medicine.

[45]  O. Boss,et al.  Uncoupling protein‐3: a new member of the mitochondrial carrier family with tissue‐specific expression , 1997, FEBS letters.

[46]  Samuel Singer,et al.  Differentiation and reversal of malignant changes in colon cancer through PPARγ , 1998, Nature Medicine.

[47]  J. Lehmann,et al.  An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ) (*) , 1995, The Journal of Biological Chemistry.

[48]  K. Kaestner,et al.  Genetic Modulation of PPARγ Phosphorylation Regulates Insulin Sensitivity , 2003 .

[49]  A. Pfeiffer,et al.  Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. , 1998, The New England journal of medicine.

[50]  Jimmy D Bell,et al.  Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. , 2003, Diabetes.

[51]  Y. Terauchi,et al.  The Mechanisms by Which Both Heterozygous Peroxisome Proliferator-activated Receptor γ (PPARγ) Deficiency and PPARγ Agonist Improve Insulin Resistance* , 2001, The Journal of Biological Chemistry.

[52]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres , 2002, Nature.

[53]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[54]  K. Chien,et al.  PPARγ Is Required for Placental, Cardiac, and Adipose Tissue Development , 1999 .

[55]  R. Evans,et al.  Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Weimin He,et al.  Muscle-specific Pparg deletion causes insulin resistance , 2003, Nature Medicine.

[57]  M. Lazar,et al.  The hormone resistin links obesity to diabetes , 2001, Nature.

[58]  M. Lazar,et al.  A futile metabolic cycle activated in adipocytes by antidiabetic agents , 2002, Nature Medicine.

[59]  Christophe Fleury,et al.  Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia , 1997, Nature Genetics.

[60]  Bruno Derudas,et al.  Peroxisome Proliferator-activated Receptor α Activators Improve Insulin Sensitivity and Reduce Adiposity* , 2000, The Journal of Biological Chemistry.

[61]  J. Ju,et al.  Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice , 2000, Nature Medicine.

[62]  P. Scherer,et al.  The adipocyte-secreted protein Acrp30 enhances hepatic insulin action , 2001, Nature Medicine.

[63]  J. H. Johnson,et al.  Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Martin D. Brand,et al.  Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean , 2000, Nature.

[65]  Bruce A. Johnson,et al.  Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. , 2003, Molecular endocrinology.

[66]  K. Jarnagin,et al.  The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling , 1985, Cell.

[67]  B. Lowell,et al.  UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. , 1997, Biochemical and biophysical research communications.

[68]  R. Evans,et al.  Peroxisome-Proliferator-Activated Receptor δ Activates Fat Metabolism to Prevent Obesity , 2003, Cell.

[69]  B. Spiegelman,et al.  PPARγ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro , 1999 .

[70]  Rene Devos,et al.  Identification and expression cloning of a leptin receptor, OB-R , 1995, Cell.

[71]  Y. Terauchi,et al.  The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity , 2001, Nature Medicine.

[72]  Philippe Froguel,et al.  Cloning of adiponectin receptors that mediate antidiabetic metabolic effects , 2003, Nature.

[73]  S. Woods,et al.  Monitoring of stored and available fuel by the CNS: implications for obesity , 2003, Nature Reviews Neuroscience.

[74]  Rachel L. Batterham,et al.  Gut hormone PYY3-36 physiologically inhibits food intake , 2002, Nature.

[75]  M. Benito,et al.  Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. , 2001, The Journal of clinical investigation.

[76]  A. Stunkard,et al.  A twin study of human obesity. , 1986, JAMA.

[77]  M. Nakazato,et al.  A role for ghrelin in the central regulation of feeding , 2001, Nature.

[78]  W. Kraus,et al.  Fatty Acid Homeostasis and Induction of Lipid Regulatory Genes in Skeletal Muscles of Peroxisome Proliferator-activated Receptor (PPAR) α Knock-out Mice , 2002, The Journal of Biological Chemistry.

[79]  W. Wahli,et al.  Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting , 1999 .

[80]  K. Umesono,et al.  Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K. Umesono,et al.  The nuclear receptor superfamily: The second decade , 1995, Cell.

[82]  G. Shulman,et al.  Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice. , 2003, Diabetes.

[83]  C. Burant,et al.  Troglitazone action is independent of adipose tissue. , 1997, The Journal of clinical investigation.

[84]  V. Mootha,et al.  Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice* , 2000, The Journal of Biological Chemistry.

[85]  William Arbuthnot Sir Lane,et al.  Role of IRS-2 in insulin and cytokine signalling , 1995, Nature.

[86]  G. Muscat,et al.  The Peroxisome Proliferator-Activated Receptor / Agonist , GW 501516 , Regulates the Expression of Genes Involved in Lipid Catabolism and Energy Uncoupling in Skeletal Muscle Cells , 2003 .

[87]  R. Evans,et al.  Nuclear receptors and lipid physiology: opening the X-files. , 2001, Science.

[88]  T. Hashimoto,et al.  PEROXISOMAL β-OXIDATION AND PEROXISOME PROLIFERATOR–ACTIVATED RECEPTOR α: An Adaptive Metabolic System , 2001 .

[89]  B. Spiegelman,et al.  C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. , 2002, Genes & development.

[90]  B. Spiegelman,et al.  Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. , 1995, The Journal of clinical investigation.

[91]  R. Evans,et al.  Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency , 2000 .

[92]  B. Brewer,et al.  Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. , 2003, The Journal of clinical investigation.

[93]  J. Auwerx,et al.  Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ hypomorphic mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[94]  L. Chao,et al.  Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. , 2000, The Journal of clinical investigation.

[95]  Bruce M. Spiegelman,et al.  Towards a molecular understanding of adaptive thermogenesis , 2000, Nature.

[96]  Y. Kido,et al.  Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue , 1998, Nature Genetics.

[97]  J. Auwerx,et al.  Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin/+ mice , 1998, Nature Medicine.

[98]  Hitoshi Yamashita,et al.  Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese , 1997, nature.

[99]  William A. Boisvert,et al.  Transcriptional Repression of Atherogenic Inflammation: Modulation by PPARδ , 2003, Science.

[100]  Weimin He,et al.  Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[101]  G. Shulman,et al.  Disruption of IRS-2 causes type 2 diabetes in mice , 1998, Nature.

[102]  P. H. Seeburg,et al.  Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes , 1985, Nature.

[103]  B. Lowell,et al.  βAR Signaling Required for Diet-Induced Thermogenesis and Obesity Resistance , 2002, Science.

[104]  Mark D. Johnson,et al.  Early neonatal death in mice homozygous for a null allele of the insulin receptor gene , 1996, Nature Genetics.

[105]  S. Woods,et al.  Peripheral signals in the control of satiety and hunger , 2003, Current opinion in clinical nutrition and metabolic care.

[106]  Johan Auwerx,et al.  Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  W. Wahli,et al.  Peroxisome proliferator-activated receptors: nuclear control of metabolism. , 1999, Endocrine reviews.

[108]  M. Reitman,et al.  WY14,643, a Peroxisome Proliferator-activated Receptor α (PPARα) Agonist, Improves Hepatic and Muscle Steatosis and Reverses Insulin Resistance in Lipoatrophic A-ZIP/F-1 Mice* , 2002, The Journal of Biological Chemistry.

[109]  I. Issemann,et al.  Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators , 1990, Nature.

[110]  C. Glass,et al.  Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and atherosclerosis. , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[111]  R. Evans,et al.  The RXR heterodimers and orphan receptors , 1995, Cell.

[112]  M. Maffei,et al.  Positional cloning of the mouse obese gene and its human homologue , 1995, Nature.