Theoretical study of the He I photoelectron spectra of HBS and FBS 1 Dedicated to Professor Neville

[1]  Alexander Kai-man Leung,et al.  The X2 Pi and A2 sigma states of FCN+ and ClCN+ : ab initio calculations and simulation of the HeI photoelectron spectra of FCN and ClCN , 1998 .

[2]  Edmond P. F. Lee,et al.  HeI photoelectron spectra of PH 2 and PF 2: comparison between simulation and experiment , 1997 .

[3]  Edmond P. F. Lee,et al.  THEORETICAL STUDY OF THE VIBRATIONAL STRUCTURE OF THE HE I PHOTOELECTRON SPECTRUM OF H2SE , 1997 .

[4]  Edmond P. F. Lee,et al.  Simulation of Emission Spectra of the PF2 (2B2 → X2B1) Transition by ab Initio Calculation and Franck−Condon Analysis , 1996 .

[5]  N. Handy,et al.  Dynamical and Nondynamical Correlation , 1996 .

[6]  F. Chau,et al.  Geometries of thioborine and chlorothioboron cations , 1994 .

[7]  C. Ng,et al.  Unimolecular and bimolecular ion-molecule reaction dynamics , 1994 .

[8]  H. Kroto,et al.  Microwave spectrum of the unstable molecule fluoro(sulphido)boron, FBS , 1991 .

[9]  İ. Özkan Franck-Condon principle for polyatomic molecules: Axis-switching effects and transformation of normal coordinates , 1990 .

[10]  F. Chau An iterative franck-condon analysis procedure for the determination of ionic geometries for H2O and H2S , 1989 .

[11]  J. Watts,et al.  Photoelectron spectra of sulphidoborons XBS where X = H, F, Cl, or Br , 1988 .

[12]  F. Chau Validity of Franck—Condon analysis procedures for deduction of excited state and ionic geometries I. The X2Π and A2Σ+ states of N2O , 1987 .

[13]  M. Nguyen Structures and energies of the two lowest-lying electronic states in the sulphido-borons radical cations, RBS+· (R = H, F, Cl and CH3) , 1987 .

[14]  M. A. King,et al.  ~A2.SIGMA.+ .fwdarw. ~X2.PI.i emission spectra of fluoro- and chlorothioboron cations, FBS+ and ClBS+ , 1986 .

[15]  F. Grein Ab initio Cl studies on ground and excited states of thioborine, HBS , 1986 .

[16]  M. A. King,et al.  Ã 2Σ+ → [Xtilde] 2Π i emission spectra of the thioborine cations HBS+ and DBS+ , 1985 .

[17]  H. Kroto,et al.  A photoelectron spectroscopic study of the (FBS)n system (n= 1–3) , 1984 .

[18]  M. Nguyen,et al.  Comparative SCF study of the nature of the carbon–phosphorus bond in phospha-alkynes, RCP, and of the boron–sulphur bond in sulphidoborons, RBS , 1984 .

[19]  D. C. Frost,et al.  Calculation of the vertical ionization potentials of XBO and XBS molecules (X = H, F and Cl) by perturbation corrections to Koopmans' theorem , 1983 .

[20]  I. Mills,et al.  The infrared spectrum, equilibrium structure and harmonic and anharmonic force field of thioborine, HBS , 1982 .

[21]  S. So Geometries and stabilities of halo(sulphido) borons and their isomers , 1982 .

[22]  H. Kroto Tilden Lecture. Semistable molecules in the laboratory and in space , 1982 .

[23]  M. Nguyen,et al.  AB initio calculations of the molecular structures and the electronic properties of sulphur-containing compounds Part I. Sulphido borons; RBS (R H, CH3, NH2, OH, F and CI) , 1982 .

[24]  O. Gropen,et al.  Theoretical analysis of the electronic structure and molecular properties of thioborine, HSB and comparison with related compounds. An ab initio mo-cal , 1976 .

[25]  A. Maki,et al.  High-resolution infrared measurements of v1 and force field calculations for thioborine (HBS) , 1975 .

[26]  C. Thomson The electronic structure and computed molecular properties of the ground state of thioborine, HBS , 1974 .

[27]  H. Kroto,et al.  The photoelectron spectrum of thioborine, HBS , 1973 .

[28]  D. W. Turner,et al.  Photoelectron spectrum of boron hydride sulfide , 1973 .

[29]  E. F. Pearson,et al.  Rotational spectrum and structure of thioborine: HBS , 1973 .

[30]  T. E. Sharp,et al.  Franck—Condon Factors for Polyatomic Molecules , 1964 .