Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

The shape of cryogenically cooled monochromator crystals deformed by the heat load of the X-ray beam is derived from rocking curve measurements at various vertical positions of a narrow-gap slit downstream from the monochromator. Experimentally, it is observed that the crystal shape changes from concave to convex when beam power increases. The observations are accurately modelled by finite-element analysis, showing an excellent quantitative agreement with experiments.

[1]  Wah-Keat Lee,et al.  Performance of a cryogenic silicon monochromator under extreme heat load. , 2004, Journal of synchrotron radiation.

[2]  Roger J. Dejus,et al.  XOP v2.4: recent developments of the x-ray optics software toolkit , 2011, Optical Engineering + Applications.

[3]  S. Takagi Dynamical theory of diffraction applicable to crystals with any kind of small distortion , 1962 .

[4]  W K Lee,et al.  Performance limits of direct cryogenically cooled silicon monochromators - experimental results at the APS. , 2000, Journal of synchrotron radiation.

[5]  D. Taupin Prévision de quelques images de dislocations par transmission des rayons X (cas de Laue symétrique) , 1967 .

[6]  S. Takagi A Dynamical Theory of Diffraction for a Distorted Crystal , 1969 .

[7]  Andreas K. Freund,et al.  Performance of synchrotron X-ray monochromators under heat load: Part 3: Comparison between theory and experiment , 2001 .

[8]  Farid Amirouche,et al.  Nonlinear thermal-distortion predictions of a silicon monochromator using the finite element method , 2001 .

[9]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[10]  Lahsen Assoufid,et al.  High heat load monochromator development at the Advanced Photon Source , 1995 .

[11]  Wah‐Keat Lee,et al.  A new approach to the solution of the Takagi-Taupin equations for x-ray optics : application to a thermally deformed crystal monochromator. , 2003 .

[12]  D H Bilderback,et al.  The historical development of cryogenically cooled monochromators for third-generation synchrotron radiation sources. , 2000, Journal of synchrotron radiation.

[13]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .

[14]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[15]  Andreas K. Freund,et al.  Performances of synchrotron X-ray monochromators under heat load. Part 2. Application of the Takagi–Taupin diffraction theory , 2001 .

[16]  Y. S. Touloukian Thermal conductivity: metallic elements and alloys , 1971 .

[17]  D. Taupin,et al.  Théorie dynamique de la diffraction des rayons X par les cristaux déformés , 1964 .

[18]  Manuel Sánchez del Río,et al.  Monte Carlo simulations of scattered power from irradiated optical elements , 2011, Optical Engineering + Applications.

[19]  Michael Wulff,et al.  The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline. , 2003, Journal of synchrotron radiation.

[20]  Jerome B. Hastings,et al.  Cryogenic cooling of monochromators , 1992 .

[21]  Gerard Marot,et al.  Cryogenic cooling of high heat load optics , 1995 .

[22]  Yoshiki Kohmura,et al.  Cryogenic cooling monochromators for the SPring-8 undualtor beamlines , 2001 .

[23]  Andreas K. Freund,et al.  Performance of synchrotron X-ray monochromators under heat load Part 1: finite element modeling , 2001 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Lin Zhang,et al.  Cryogenic cooled silicon-based x-ray optical elements: heat load limit , 1993, Optics & Photonics.

[26]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .