Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape
暂无分享,去创建一个
Manuel Sánchez del Río | Pieter Glatzel | Carsten Detlefs | Giulio Monaco | P. Glatzel | C. Detlefs | T. Roth | G. Monaco | A. Chumakov | Lin Zhang | Lin Zhang | Thomas Roth | Aleksandr I. Chumakov | M. Sanchez del Rio
[1] Wah-Keat Lee,et al. Performance of a cryogenic silicon monochromator under extreme heat load. , 2004, Journal of synchrotron radiation.
[2] Roger J. Dejus,et al. XOP v2.4: recent developments of the x-ray optics software toolkit , 2011, Optical Engineering + Applications.
[3] S. Takagi. Dynamical theory of diffraction applicable to crystals with any kind of small distortion , 1962 .
[4] W K Lee,et al. Performance limits of direct cryogenically cooled silicon monochromators - experimental results at the APS. , 2000, Journal of synchrotron radiation.
[5] D. Taupin. Prévision de quelques images de dislocations par transmission des rayons X (cas de Laue symétrique) , 1967 .
[6] S. Takagi. A Dynamical Theory of Diffraction for a Distorted Crystal , 1969 .
[7] Andreas K. Freund,et al. Performance of synchrotron X-ray monochromators under heat load: Part 3: Comparison between theory and experiment , 2001 .
[8] Farid Amirouche,et al. Nonlinear thermal-distortion predictions of a silicon monochromator using the finite element method , 2001 .
[9] B. Krauskopf,et al. Proc of SPIE , 2003 .
[10] Lahsen Assoufid,et al. High heat load monochromator development at the Advanced Photon Source , 1995 .
[11] Wah‐Keat Lee,et al. A new approach to the solution of the Takagi-Taupin equations for x-ray optics : application to a thermally deformed crystal monochromator. , 2003 .
[12] D H Bilderback,et al. The historical development of cryogenically cooled monochromators for third-generation synchrotron radiation sources. , 2000, Journal of synchrotron radiation.
[13] J. Wortman,et al. Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .
[14] Y. S. Touloukian. Thermophysical properties of matter , 1970 .
[15] Andreas K. Freund,et al. Performances of synchrotron X-ray monochromators under heat load. Part 2. Application of the Takagi–Taupin diffraction theory , 2001 .
[16] Y. S. Touloukian. Thermal conductivity: metallic elements and alloys , 1971 .
[17] D. Taupin,et al. Théorie dynamique de la diffraction des rayons X par les cristaux déformés , 1964 .
[18] Manuel Sánchez del Río,et al. Monte Carlo simulations of scattered power from irradiated optical elements , 2011, Optical Engineering + Applications.
[19] Michael Wulff,et al. The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline. , 2003, Journal of synchrotron radiation.
[20] Jerome B. Hastings,et al. Cryogenic cooling of monochromators , 1992 .
[21] Gerard Marot,et al. Cryogenic cooling of high heat load optics , 1995 .
[22] Yoshiki Kohmura,et al. Cryogenic cooling monochromators for the SPring-8 undualtor beamlines , 2001 .
[23] Andreas K. Freund,et al. Performance of synchrotron X-ray monochromators under heat load Part 1: finite element modeling , 2001 .
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] Lin Zhang,et al. Cryogenic cooled silicon-based x-ray optical elements: heat load limit , 1993, Optics & Photonics.
[26] 良二 上田. J. Appl. Cryst.の発刊に際して , 1970 .