Phase-Synchronization Early Epileptic Seizure

A low-power VLSI processor architecture that com- putes in real time the magnitude and phase-synchronization of two input neural signals is presented. The processor is a part of an envisioned closed-loop implantable microsystem for adap- tive neural stimulation. The architecture uses three CORDIC processing cores that require shift-and-add operations but no multiplication. The 10-bit processor synthesized and prototyped in a standard 1.2 V 0.13 CMOS technology utilizes 41,000 logic gates. It dissipates 3.6 per input pair, and provides 1.7 kS/s per-channel throughput when clocked at 2.5 MHz. The power scales linearly with the number of input channels or the sampling rate. The efficacy of the processor in early epileptic seizure detection is validated on human intracranial EEG data.

[1]  Liang-Gee Chen,et al.  Sub-microwatt correlation integral processor for implantable closed-loop epileptic neuromodulator , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[2]  Mohamad Sawan,et al.  A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[3]  K. Sridharan,et al.  50 Years of CORDIC: Algorithms, Architectures, and Applications , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Andreas Schulze-Bonhage,et al.  Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. , 2006, Chaos.

[5]  Pedram Mohseni,et al.  An activity-dependent brain microstimulation SoC with integrated 23nV/rtHz neural recording front-end and 750nW spike discrimination processor , 2010, 2010 Symposium on VLSI Circuits.

[6]  R. Genov,et al.  VLSI multivariate phase synchronization epileptic seizure detector , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[7]  A. Schulze-Bonhage,et al.  Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic , 2004 .

[8]  Karim Abdelhalim,et al.  A phase synchronization and magnitude processor VLSI architecture for adaptive neural stimulation , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[9]  Steve S. Chung,et al.  Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy , 2010, Epilepsia.

[10]  R. Genov,et al.  256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes , 2009, IEEE Journal of Solid-State Circuits.

[11]  Yann LeCun,et al.  Classification of patterns of EEG synchronization for seizure prediction , 2009, Clinical Neurophysiology.

[12]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[13]  Kaushik Roy,et al.  The design and hardware implementation of a low-power real-time seizure detection algorithm , 2009, Journal of neural engineering.

[14]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[15]  W. Art Chaovalitwongse,et al.  Adaptive epileptic seizure prediction system , 2003, IEEE Transactions on Biomedical Engineering.

[16]  Kunjan Patel,et al.  Low power real-time seizure detection for ambulatory EEG , 2009, 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare.

[17]  D. Gupta,et al.  Narrowband vs. Broadband Phase Synchronization Analysis Applied to Independent Components of Ictal and Interictal EEG , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  Roman Genov,et al.  Algorithmic Delta-Sigma-modulated FIR filter. , 2006 .

[19]  B. Litt,et al.  Seizure Prediction: Its Evolution and Therapeutic Potential , 2009 .

[20]  A. Murro,et al.  Implantation of a Closed-Loop Stimulation in the Management of Medically Refractory Focal Epilepsy , 2005, Stereotactic and Functional Neurosurgery.

[21]  Felice T. Sun,et al.  Responsive cortical stimulation for the treatment of epilepsy , 2011, Neurotherapeutics.

[22]  M. Morrell,et al.  Intracranial stimulation therapy for epilepsy , 2009, Neurotherapeutics.

[23]  G. Vachtsevanos,et al.  Epileptic Seizures May Begin Hours in Advance of Clinical Onset A Report of Five Patients , 2001, Neuron.

[24]  Ivan Osorio,et al.  High Frequency Thalamic Stimulation for Inoperable Mesial Temporal Epilepsy , 2007, Epilepsia.

[25]  Karim Abdelhalim,et al.  The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[26]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[27]  Ivan Osorio,et al.  Analog seizure detection and performance evaluation , 2006, IEEE Transactions on Biomedical Engineering.

[28]  José Luis Perez Velazquez,et al.  Experimental observation of increased fluctuations in an order parameter before epochs of extended brain synchronization , 2011, Journal of biological physics.

[29]  A. Schulze-Bonhage,et al.  How well can epileptic seizures be predicted? An evaluation of a nonlinear method. , 2003, Brain : a journal of neurology.

[30]  Michael X Cohen,et al.  Assessing transient cross-frequency coupling in EEG data , 2008, Journal of Neuroscience Methods.

[31]  S. Schiff,et al.  Decreased Neuronal Synchronization during Experimental Seizures , 2002, The Journal of Neuroscience.