Symmetry and Orbit Detection via Lie‐Algebra Voting

In this paper, we formulate an automatic approach to the detection of partial, local, and global symmetries and orbits in arbitrary 3D datasets. We improve upon existing voting‐based symmetry detection techniques by leveraging the Lie group structure of geometric transformations. In particular, we introduce a logarithmic mapping that ensures that orbits are mapped to linear subspaces, hence unifying and extending many existing mappings in a single Lie‐algebra voting formulation. Compared to previous work, our resulting method offers significantly improved robustness as it guarantees that our symmetry detection of an input model is frame, scale, and reflection invariant. As a consequence, we demonstrate that our approach efficiently and reliably discovers symmetries and orbits of geometric datasets without requiring heavy parameter tuning.

[1]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[2]  Hans-Peter Seidel,et al.  A Graph-Based Approach to Symmetry Detection , 2008, VG/PBG@SIGGRAPH.

[3]  Wei Jiang,et al.  Skeleton-based intrinsic symmetry detection on point clouds , 2013, Graph. Model..

[4]  Hans-Peter Seidel,et al.  Scalable Symmetry Detection for Urban Scenes , 2013, Comput. Graph. Forum.

[5]  Young J. Kim,et al.  Interactive generalized penetration depth computation for rigid and articulated models using object norm , 2014, ACM Trans. Graph..

[6]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[7]  Hans-Peter Seidel,et al.  Relating shapes via geometric symmetries and regularities , 2014, ACM Trans. Graph..

[8]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[9]  Amir Averbuch,et al.  3-D Symmetry Detection and Analysis Using the Pseudo-polar Fourier Transform , 2010, International Journal of Computer Vision.

[10]  Vijay Kumar,et al.  Metrics and Connections for Rigid-Body Kinematics , 1999, Int. J. Robotics Res..

[11]  Daniel Cohen-Or,et al.  Layered analysis of irregular facades via symmetry maximization , 2013, ACM Trans. Graph..

[12]  Hans-Peter Seidel,et al.  Pattern-aware shape deformation using sliding dockers , 2011, ACM Trans. Graph..

[13]  Hans-Peter Seidel,et al.  Symmetry Detection Using Line Features , 2009 .

[14]  Ligang Liu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, ACM Trans. Graph..

[15]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[16]  Hans-Peter Seidel,et al.  A probabilistic framework for partial intrinsic symmetries in geometric data , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[18]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[19]  Hans-Peter Seidel,et al.  Symmetry Detection Using Feature Lines , 2009, Comput. Graph. Forum.

[20]  Kai Xu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.

[21]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[23]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[24]  Hans-Peter Seidel,et al.  An efficient construction of reduced deformable objects , 2013, ACM Trans. Graph..

[25]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[27]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[28]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[29]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[30]  I. Daubechies,et al.  Symmetry factored embedding and distance , 2010, ACM Trans. Graph..

[31]  Hans-Peter Seidel,et al.  Real-time lens blur effects and focus control , 2010, SIGGRAPH 2010.

[32]  W. Culver On the existence and uniqueness of the real logarithm of a matrix , 1966 .

[33]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[34]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.