SIFT 알고리즘을 이용한 혼합형 모바일 교육 시스템

무선 인터넷과 모바일 기기의 보급으로 언제 어디서나 원하는 정보를 얻을 수 있는 유비쿼터스 환경을 위한 인프라가 구축되면서 교육을 포함한 다양한 분야에서 오프라인과 온라인 컨텐츠를 동시에 이용함으로써 정보 전달의 효율성을 높일 수 있는 방법에 대한 연구가 활발하게 이루어지고 있다. 본 논문은 사용자에게 모바일 기기를 이용하여 오프라인과 온라인 컨텐츠를 함께 제공하여 교육의 효과를 높일 수 있는 혼합형 모바일 교육 시스템(Mixed Mobile Education System: MME)을 제안한다. 제안된 시스템은 기존의 연구와 달리 사용자에게 자연스러운 환경을 제공하기 위해서 부가적인 태그를 사용하지 않는다. 태그를 사용하는 시스템의 경우 새로운 데이터의 등록이 어렵고, 유사한 내용의 오프라인 컨텐츠 사용이 불가능하기 때문이다. 본 논문에서 우리는 저화질의 카메라를 통해 입력받은 영상에서 잡음, 색상 왜곡, 크기 및 기울기 변화에 영향을 적게 받는 특징점을 추출하고 오프라인 컨텐츠를 인식하기 위해 (Scale Invariant Feature Transform(SIFT) 알고리즘을 사용하였다. 또한 클라이언트-서버 구조를 사용함으로써 모바일 장치의 제한적인 저장 능력 문제를 해결하고, 데이터의 등록 및 수정이 용이하도록 하였다. 실험을 통해 기존의 혼합형 교육 시스템과의 성능을 비교하고 제안된 시스템의 장단점을 확인하였으며, 시스템을 실생활에 적용하였을 경우 다양한 상황에서도 사용자에게 만족할만한 성능을 제공함을 확인하였다.