Global convergence of the method of shortest residuals

Summary. The method of shortest residuals (SR) was presented by Hestenes and studied by Pytlak. If the function is quadratic, and if the line search is exact, then the SR method reduces to the linear conjugate gradient method. In this paper, we put forward the formulation of the SR method when the line search is inexact. We prove that, if stepsizes satisfy the strong Wolfe conditions, both the Fletcher-Reeves and Polak-Ribière-Polyak versions of the SR method converge globally. When the Wolfe conditions are used, the two versions are also convergent provided that the stepsizes are uniformly bounded; if the stepsizes are not bounded, an example is constructed to show that they need not converge. Numerical results show that the SR method is a promising alternative of the standard nonlinear conjugate gradient method.