The SINMAP Approach to Terrain Stability Mapping

A promising approach to modeling the spatial distribution of shallow debris slides combines a mechanistic infinite slope stability model with a steady-state hydrology model. The spatial distribution of a "stability index" is governed primarily by specific catchment area (the upslope area per unit contour length) and slope. The model can be interactively calibrated to the unique characteristics of the topography, rainfall, and soils of a particular study area using simple parameters, graphs and maps. Once a landslide and terrain inventory is completed using aerial photographs, this approach is shown to have the capability of producing a stability classification map of a huge area in a very short time. An analysis of the Kilpala watershed of northern Vancouver Island, British Columbia is presented as an example. RESUME: Une approche prometteuse a modeler la distribution spatiale des glissments de debris peu profondes combine un modele mecaniste de stabilite de pente infini avec un modele d'hydrologie equilibre. La distribution spatiale d'un "classe de stabilite " est regie principalement par le bassin de captation specifique (la surface vers le haut de la pente par longueur de decoupe d'unite) et la pente. Le modele peut etre calibre en mode interactif aux seules caracteristiques de la topographie, des precipitations, et des sols d'une zone particuliere d'etude en utilisant des parametres, des graphiques et des cartes simples. Une fois qu'un inventaire de terrain et de glissments de terrain est termine en utilisant les photographies aeriennes, cette approche est montree pour avoir la capacite de produire une carte de classification de stabilite d'une zone enorme dans en temps tres peu. Une analyse de la ligne de partage de Kilpala de L'ile Nordique de Vancouver, Colombie Britannique est presentee comme exemple.

[1]  E. O'Loughlin Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis , 1986 .

[2]  R. Sidle,et al.  Hillslope stability and land use , 1985 .

[3]  R. Sidle A theoretical model of the effects of timber harvesting on slope stability , 1992 .

[4]  D. Montgomery,et al.  A physically based model for the topographic control on shallow landsliding , 1994 .

[5]  Carol S. Tatay Level I Stability Analysis (LISA) Documentation for Version 2.0 , 1996 .

[6]  I. Moore,et al.  A contour‐based topographic model for hydrological and ecological applications , 1988, Earth surface processes and landforms.

[7]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[8]  Thomas A. McMahon,et al.  Physically based hydrologic modeling: 2. Is the concept realistic? , 1992 .

[9]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[10]  D. Montgomery,et al.  Source areas, drainage density, and channel initiation , 1989 .

[11]  R. Sidle,et al.  A distributed slope stability model for steep forested basins , 1995 .

[12]  D. Montgomery,et al.  Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model , 1993, The Journal of Geology.

[13]  D. Montgomery,et al.  Erosion thresholds and land surface morphology , 1992 .

[14]  Thomas A. McMahon,et al.  Physically based hydrologic modeling: 1. A terrain‐based model for investigative purposes , 1992 .

[15]  I. Moore,et al.  Terrain‐based catchment partitioning and runoff prediction using vector elevation data , 1991 .

[16]  P. Reichenbach,et al.  GIS techniques and statistical models in evaluating landslide hazard , 1991 .

[17]  D. Tarboton,et al.  Terrain Stability Mapping with SINMAP, technical description and users guide for version 1.00 , 1998 .

[18]  D. Montgomery,et al.  Where do channels begin? , 1988, Nature.

[19]  M. Singer Hillslope Stability and Land Use (Water Resources Monograph 11) , 1988 .