A non-perturbative exploration of the high energy regime in N f = 3 QCD

Using continuum extrapolated lattice data we traceafamilyofrunningcouplingsinthree-flavourQCDover a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1 / L 0 ≈ 4 GeV through ¯ g 2 ( L 0 ) = 2 . 012, we quote L 0 (cid:2) N f = 3 MS = 0 . 0791 ( 21 ) . This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite L , estimate of the requires g we We details and an extended

[1]  F. Herzog,et al.  Five-loop renormalisation of QCD in covariant gauges , 2017, Journal of High Energy Physics.

[2]  S. Schaefer,et al.  QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter. , 2017, Physical review letters.

[3]  M. Luscher,et al.  SMD-based numerical stochastic perturbation theory , 2017, The European Physical Journal C.

[4]  A. Maier,et al.  Complete renormalization of QCD at five loops , 2017, Journal of High Energy Physics.

[5]  M. Luscher,et al.  The gradient flow coupling from numerical stochastic perturbation theory , 2016, 1612.04955.

[6]  P. Fritzsch,et al.  Slow running of the Gradient Flow coupling from 200 MeV to 4 GeV in $N_{\rm f}=3$ QCD , 2016, 1607.06423.

[7]  K. Chetyrkin,et al.  Five-Loop Running of the QCD Coupling Constant. , 2016, Physical review letters.

[8]  T. Neumann,et al.  The perturbative QCD gradient flow to three loops , 2016, 1606.03756.

[9]  P. Fritzsch,et al.  Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies. , 2016, Physical review letters.

[10]  S. Sint,et al.  Symanzik improvement of the gradient flow in lattice gauge theories , 2015, The European Physical Journal C.

[11]  U. Wolff,et al.  Non-perturbative computation of the strong coupling constant on the lattice , 2015, 1501.01861.

[12]  M. D. Brida,et al.  Numerical Stochastic Perturbation Theory and the Gradient Flow , 2013, 1311.3936.

[13]  P. Fritzsch,et al.  The gradient flow coupling in the Schrödinger functional , 2013, 1308.4559.

[14]  Pol Vilaseca,et al.  Lattice artefacts in the Schrödinger Functional coupling for strongly interacting theories , 2012, 1211.0411.

[15]  Stefan Schaefer,et al.  Lattice QCD with open boundary conditions and twisted-mass reweighting , 2012, Comput. Phys. Commun..

[16]  M. Luscher Properties and uses of the Wilson flow in lattice QCD , 2010, 1006.4518.

[17]  U. Wolff,et al.  The Running coupling of QCD with four flavors , 2010, 1006.0672.

[18]  K. Kanaya,et al.  Precise determination of the strong coupling constant in N(f) = 2+1 lattice QCD with the Schrodinger functional scheme , 2009, 0906.3906.

[19]  M. Czakon,et al.  The Four-loop QCD beta-function and anomalous dimensions , 2004, hep-ph/0411261.

[20]  U. Wolff,et al.  Computation of the strong coupling in QCD with two dynamical flavors , 2004, hep-lat/0411025.

[21]  S.Aoki,et al.  Nonperturbative O(a) improvement of Wilson quark action in three-flavor QCD with plaquette gauge action , 2004, hep-lat/0406028.

[22]  U. Wolff,et al.  Monte Carlo errors with less errors , 2003, hep-lat/0306017.

[23]  U. Wolff,et al.  Two-loop computation of the Schrödinger functional in lattice QCD , 1999, hep-lat/9911018.

[24]  U. Wolff,et al.  Two loop computation of the Schrodinger functional in pure SU(3) lattice gauge theory , 1998, hep-lat/9809175.

[25]  E. Vicari,et al.  The two-loop relation between the bare lattice coupling and the , 1998 .

[26]  University of Pisa,et al.  The three-loop beta function of SU(N) lattice gauge theories with Wilson fermions , 1998, hep-lat/9801007.

[27]  P. Weisz,et al.  Further results on O(a) improved lattice QCD to one-loop order of perturbation theory , 1997, hep-lat/9704001.

[28]  U. Wolff,et al.  Non-perturbative O(a) improvement of lattice QCD , 1996, hep-lat/9609035.

[29]  M. Luscher,et al.  O(a) improvement of the axial current in lattice QCD to one-loop order of perturbation theory , 1996, hep-lat/9606016.

[30]  M. Luescher,et al.  Chiral symmetry and O(a) improvement in lattice QCD , 1996, hep-lat/9605038.

[31]  U. Wolff,et al.  Non-perturbative renormalization of lattice QCD at all scales , 1995, hep-lat/9512009.

[32]  R. Sommer,et al.  THE RUNNING COUPLING FROM THE QCD SCHRODINGER FUNCTIONAL : A ONE-LOOP ANALYSIS , 1995, hep-lat/9508012.

[33]  U. Wolff,et al.  Universality and the approach to the continuum limit in lattice gauge theory , 1994, hep-lat/9411017.

[34]  S. Sint On the Schrödinger functional in QCD , 1993, hep-lat/9312079.

[35]  U. Wolff,et al.  A Precise determination of the running coupling in the SU(3) Yang-Mills theory , 1993, hep-lat/9309005.

[36]  U. Wolff,et al.  The Schrödinger functional — a renormalizable probe for non-abelian gauge theories , 1992, hep-lat/9207009.

[37]  U. Wolff,et al.  A Numerical method to compute the running coupling in asymptotically free theories , 1991 .

[38]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[39]  B. Sheikholeslami,et al.  Improved continuum limit lattice action for QCD with wilson fermions , 1985 .

[40]  S. Weinberg New approach to the renormalization group , 1973 .