Thioether‐Functionalized Quinone‐Based Resorcin[4]arene Cavitands: Electroswitchable Molecular Actuators

a Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland, e-mail: jovana.milic@epfl.ch; diederich@org.chem.ethz.ch b Laboratory of Photonics and Interfaces, Station 6, EPF Lausanne, CH-1015, Switzerland c Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, 812 37 Bratislava, Slovak Republic d Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Amalienstaße 54, 80799 Munich, Germany e Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 Munich, Germany f Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, CB3 0FS Cambridge, UK g Supramolecular Nano-Materials Laboratory, Institute of Material Science and Engineering, Station 12, MXG, EPF Lausanne, CH-1015, Switzerland h Université de Strasbourg, Laboratoire d’Électrochimie et de Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France

[1]  F. Diederich,et al.  Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. , 2018, Chemistry.

[2]  J. Cheon,et al.  Synergism of Nanomaterials with Physical Stimuli for Biology and Medicine. , 2017, Accounts of chemical research.

[3]  F. Diederich,et al.  Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches. , 2016, The journal of physical chemistry letters.

[4]  Chuancheng Jia,et al.  Molecular-Scale Electronics: From Concept to Function. , 2016, Chemical reviews.

[5]  Elizabeth S. Sterner,et al.  Triptycene-Roofed Quinoxaline Cavitands for the Supramolecular Detection of BTEX in Air. , 2016, Chemistry.

[6]  W. Domcke,et al.  Photoinduced water splitting via benzoquinone and semiquinone sensitisation. , 2015, Physical chemistry chemical physics : PCCP.

[7]  Manfred Kansy,et al.  Fluorination Patterning: A Study of Structural Motifs That Impact Physicochemical Properties of Relevance to Drug Discovery. , 2015, Journal of medicinal chemistry.

[8]  Fredrik Westerlund,et al.  Single-molecule electronics: from chemical design to functional devices. , 2014, Chemical Society reviews.

[9]  François Diederich,et al.  Development of redox-switchable resorcin[4]arene cavitands. , 2014, Accounts of chemical research.

[10]  F. Diederich,et al.  Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands. , 2014, Journal of the American Chemical Society.

[11]  G. Molnár,et al.  Molecular actuators driven by cooperative spin-state switching , 2013, Nature Communications.

[12]  E. Keinan,et al.  Chemisorbed monolayers of corannulene penta-thioethers on gold. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[13]  N. Giuseppone,et al.  Advances in Supramolecular Electronics – From Randomly Self‐assembled Nanostructures to Addressable Self‐Organized Interconnects , 2013, Advanced materials.

[14]  F. Diederich,et al.  Redox-switchable resorcin[4]arene cavitands: molecular grippers. , 2012, Journal of the American Chemical Society.

[15]  René M. Williams,et al.  Bis-semiquinone (bi-radical) formation by photoinduced proton coupled electron transfer in covalently linked catechol-quinone systems: Aviram's hemiquinones revisited. , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[16]  F. Diederich,et al.  Quinone-based, redox-active resorcin[4]arene cavitands. , 2012, Angewandte Chemie.

[17]  Orion B. Berryman,et al.  A light controlled cavitand wall regulates guest binding. , 2011, Chemical communications.

[18]  Joseph Wang,et al.  Motion control at the nanoscale. , 2010, Small.

[19]  S. Lindeman,et al.  Molecular actuator: redox-controlled clam-like motion in a bichromophoric electron donor. , 2009, Organic letters.

[20]  T. Swager,et al.  Pi-dimer formation as the driving force for calix[4]arene-based molecular actuators. , 2008, Organic letters.

[21]  Laura Pirondini,et al.  Supramolecular sensing with phosphonate cavitands. , 2008, Chemistry.

[22]  Laura Pirondini,et al.  Molecular recognition at the gas-solid interface: a powerful tool for chemical sensing. , 2007, Chemical Society reviews.

[23]  James K. Gimzewski,et al.  Resorcin[4]arene Cavitand‐Based Molecular Switches , 2006 .

[24]  S. Nakatsuji Recent progress toward the exploitation of organic radical compounds with photo-responsive magnetic properties. , 2004, Chemical Society reviews.

[25]  F. Diederich,et al.  Zn(II)-induced conformational control of amphiphilic cavitands in langmuir monolayers. , 2004, Chemical communications.

[26]  Vladimir A. Azov,et al.  NMR Investigations into the Vase-Kite Conformational Switching of Resorcin[4]arene Cavitands , 2004 .

[27]  Gang Zhao,et al.  Quinoxaline excision: a novel approach to tri- and diquinoxaline cavitands. , 2004, Organic letters.

[28]  Franois Diederich,et al.  ZnII-induced conformational control of amphiphilic cavitands in Langmuir monolayersElectronic supplementary information (ESI) available: characterization of 1 and 2; protocol of Langmuir experiments performed on the water subphase at different pH; Job plot analysis. See http://www.rsc.org/suppdata/c , 2004 .

[29]  V. Azov,et al.  Functionalized and Partially or Differentially Bridged Resorcin[4]arene Cavitands: Synthesis and Solid‐State Structures , 2003 .

[30]  C. Massera,et al.  Rational design of cavitand receptors for mass sensors. , 2003, Journal of the American Chemical Society.

[31]  James K. Gimzewski,et al.  Synthesis of molecular-gripper-type dynamic receptors and STM-imaging of self-assembled monolayers on gold , 2001 .

[32]  F. Diederich,et al.  Conformational Switching of Resorcin[4]arene Cavitands by Protonation. , 2001 .

[33]  Andrew Beeby,et al.  Conformational Switching of Resorcin[4]arene Cavitands by Protonation, Preliminary Communication , 2001 .

[34]  Yutaka Nunokawa,et al.  A remarkably efficient initiation by 9-BBN in the radical addition reactions of alkanethiols to alk-1-enes , 1991 .

[35]  D. Cram,et al.  Cavitands: synthetic molecular vessels , 1982 .