Real-Time Data Assimilation for Operational Ensemble Streamflow Forecasting
暂无分享,去创建一个
[1] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[2] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[3] S. Sorooshian,et al. Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .
[4] Peter K. Kitanidis,et al. Real‐time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty , 1980 .
[5] P. Kitanidis,et al. Real‐time forecasting with a conceptual hydrologic model: 2. Applications and results , 1980 .
[6] G. Kuczera. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .
[7] G. Kuczera. Improved parameter inference in catchment models: 2. Combining different kinds of hydrologic data and testing their compatibility , 1983 .
[8] S. Sorooshian,et al. Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .
[9] I. Rodríguez‐Iturbe,et al. Random Functions and Hydrology , 1984 .
[10] J. Rice. Bandwidth Choice for Nonparametric Regression , 1984 .
[11] Eric F. Wood,et al. REAL-TIME FORECASTING. , 1985 .
[12] Soroosh Sorooshian,et al. The relationship between data and the precision of parameter estimates of hydrologic models , 1985 .
[13] Karel J. Keesman,et al. Membership-set estimation using random scanning and principal componet analysis , 1990 .
[14] P. Hall,et al. Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .
[15] Karel J. Keesman,et al. Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .
[16] H. Scholten,et al. Prediction Uncertainty in an Ecological Model of the Oosterschelde Estuary , 1991 .
[17] Keith Beven,et al. The future of distributed models: model calibration and uncertainty prediction. , 1992 .
[18] S. Sorooshian,et al. Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .
[19] G. Evensen. Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .
[20] Juan B. Valdés,et al. Adaptive Parameter Estimation for Multisite Hydrologic Forecasting , 1992 .
[21] T. Gasser,et al. Nonparametric estimation of residual variance revisited , 1993 .
[22] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[23] A. Jakeman,et al. How much complexity is warranted in a rainfall‐runoff model? , 1993 .
[24] Soroosh Sorooshian,et al. Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .
[25] Soroosh Sorooshian,et al. Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .
[26] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[27] Juan B. Valdés,et al. Streamflow Forecasting for Han River Basin, Korea , 1994 .
[28] Michael Ghil,et al. Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .
[29] K. Beven,et al. Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .
[30] S. Sorooshian,et al. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .
[31] Jens Christian Refsgaard,et al. Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting , 1997 .
[32] G. Kuczera. Efficient subspace probabilistic parameter optimization for catchment models , 1997 .
[33] Holger Dette,et al. Estimating the variance in nonparametric regression—what is a reasonable choice? , 1998 .
[34] Soroosh Sorooshian,et al. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .
[35] Soroosh Sorooshian,et al. A multi-step automatic calibration scheme (MACS) for river forecasting models utilizing the national weather service river forecast system (NWSRFS) , 1999 .
[36] S. Sorooshian,et al. A multistep automatic calibration scheme for river forecasting models , 2000 .
[37] Henrik Madsen,et al. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .
[38] Soroosh Sorooshian,et al. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .
[39] Jeffrey L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .
[40] John W. Eaton. Octave: Past, Present, and Future , 2001 .
[41] Mancia Anguita,et al. MPI Toolbox for Octave , 2001 .
[42] H. J. Vested,et al. Developments in Operational Shelf Sea Modelling in Danish Waters , 2001 .
[43] Soroosh Sorooshian,et al. Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .
[44] M. Trosset,et al. Bayesian recursive parameter estimation for hydrologic models , 2001 .
[45] Peter Young,et al. Data-based Mechanistic Modelling and Validation of Rainfall-flow Processes , 2001 .
[46] D. McLaughlin,et al. Downscaling of radio brightness measurements for soil moisture estimation: A four‐dimensional variational data assimilation approach , 2001 .
[47] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[48] S. Sorooshian,et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .
[49] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[50] Peter C Young,et al. Advances in real–time flood forecasting , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[51] Kuolin Hsu,et al. Self‐organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis , 2002 .
[52] Antonio F. Díaz,et al. Performance of Message-Passing MATLAB Toolboxes , 2002, VECPAR.
[53] Feyzan Misirli Baysal. Improving efficiency and effectiveness of Bayesian recursive parameter estimation for hydrologic models , 2003 .
[54] Neil McIntyre,et al. Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .
[55] George Kuczera,et al. Confronting input uncertainty in environmental modelling | NOVA. The University of Newcastle's Digital Repository , 2003 .
[56] Soroosh Sorooshian,et al. Correction to “Toward improved identifiability of hydrologic model parameters: The information content of experimental data” , 2003 .
[57] Dong-Jun Seo,et al. Real-Time Variational Assimilation of Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting , 2003 .
[58] S. Sorooshian,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .
[59] Jack Dongarra,et al. High Performance Computing for Computational Science , 2003 .
[60] Soroosh Sorooshian,et al. Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .
[61] Henrik Madsen,et al. Adaptive state updating in real-time river flow forecasting—a combined filtering and error forecasting procedure , 2005 .
[62] Kuolin Hsu,et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .
[63] C. Diks,et al. Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .
[64] S. Sorooshian,et al. Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model , 2006, Journal of Hydrology.
[65] M. Clark,et al. Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters , 2006 .
[66] Soroosh Sorooshian,et al. A 'User-Friendly' approach to parameter estimation in hydrologic models , 2006 .
[67] Peter M. A. Sloot,et al. Application of parallel computing to stochastic parameter estimation in environmental models , 2006, Comput. Geosci..
[68] Kristine L. Bell,et al. A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .