Real-Time Data Assimilation for Operational Ensemble Streamflow Forecasting

Abstract Operational flood forecasting requires that accurate estimates of the uncertainty associated with model-generated streamflow forecasts be provided along with the probable flow levels. This paper demonstrates a stochastic ensemble implementation of the Sacramento model used routinely by the National Weather Service for deterministic streamflow forecasting. The approach, the simultaneous optimization and data assimilation method (SODA), uses an ensemble Kalman filter (EnKF) for recursive state estimation allowing for treatment of streamflow data error, model structural error, and parameter uncertainty, while enabling implementation of the Sacramento model without major modification to its current structural form. Model parameters are estimated in batch using the shuffled complex evolution metropolis stochastic-ensemble optimization approach (SCEM-UA). The SODA approach was implemented using parallel computing to handle the increased computational requirements. Studies using data from the Leaf River...

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[3]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[4]  Peter K. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty , 1980 .

[5]  P. Kitanidis,et al.  Real‐time forecasting with a conceptual hydrologic model: 2. Applications and results , 1980 .

[6]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[7]  G. Kuczera Improved parameter inference in catchment models: 2. Combining different kinds of hydrologic data and testing their compatibility , 1983 .

[8]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[9]  I. Rodríguez‐Iturbe,et al.  Random Functions and Hydrology , 1984 .

[10]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[11]  Eric F. Wood,et al.  REAL-TIME FORECASTING. , 1985 .

[12]  Soroosh Sorooshian,et al.  The relationship between data and the precision of parameter estimates of hydrologic models , 1985 .

[13]  Karel J. Keesman,et al.  Membership-set estimation using random scanning and principal componet analysis , 1990 .

[14]  P. Hall,et al.  Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .

[15]  Karel J. Keesman,et al.  Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .

[16]  H. Scholten,et al.  Prediction Uncertainty in an Ecological Model of the Oosterschelde Estuary , 1991 .

[17]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[18]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[19]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[20]  Juan B. Valdés,et al.  Adaptive Parameter Estimation for Multisite Hydrologic Forecasting , 1992 .

[21]  T. Gasser,et al.  Nonparametric estimation of residual variance revisited , 1993 .

[22]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[23]  A. Jakeman,et al.  How much complexity is warranted in a rainfall‐runoff model? , 1993 .

[24]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[25]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[26]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[27]  Juan B. Valdés,et al.  Streamflow Forecasting for Han River Basin, Korea , 1994 .

[28]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[29]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[30]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[31]  Jens Christian Refsgaard,et al.  Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting , 1997 .

[32]  G. Kuczera Efficient subspace probabilistic parameter optimization for catchment models , 1997 .

[33]  Holger Dette,et al.  Estimating the variance in nonparametric regression—what is a reasonable choice? , 1998 .

[34]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[35]  Soroosh Sorooshian,et al.  A multi-step automatic calibration scheme (MACS) for river forecasting models utilizing the national weather service river forecast system (NWSRFS) , 1999 .

[36]  S. Sorooshian,et al.  A multistep automatic calibration scheme for river forecasting models , 2000 .

[37]  Henrik Madsen,et al.  Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .

[38]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[39]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[40]  John W. Eaton Octave: Past, Present, and Future , 2001 .

[41]  Mancia Anguita,et al.  MPI Toolbox for Octave , 2001 .

[42]  H. J. Vested,et al.  Developments in Operational Shelf Sea Modelling in Danish Waters , 2001 .

[43]  Soroosh Sorooshian,et al.  Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .

[44]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[45]  Peter Young,et al.  Data-based Mechanistic Modelling and Validation of Rainfall-flow Processes , 2001 .

[46]  D. McLaughlin,et al.  Downscaling of radio brightness measurements for soil moisture estimation: A four‐dimensional variational data assimilation approach , 2001 .

[47]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[48]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[49]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[50]  Peter C Young,et al.  Advances in real–time flood forecasting , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  Kuolin Hsu,et al.  Self‐organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis , 2002 .

[52]  Antonio F. Díaz,et al.  Performance of Message-Passing MATLAB Toolboxes , 2002, VECPAR.

[53]  Feyzan Misirli Baysal Improving efficiency and effectiveness of Bayesian recursive parameter estimation for hydrologic models , 2003 .

[54]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[55]  George Kuczera,et al.  Confronting input uncertainty in environmental modelling | NOVA. The University of Newcastle's Digital Repository , 2003 .

[56]  Soroosh Sorooshian,et al.  Correction to “Toward improved identifiability of hydrologic model parameters: The information content of experimental data” , 2003 .

[57]  Dong-Jun Seo,et al.  Real-Time Variational Assimilation of Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting , 2003 .

[58]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[59]  Jack Dongarra,et al.  High Performance Computing for Computational Science , 2003 .

[60]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[61]  Henrik Madsen,et al.  Adaptive state updating in real-time river flow forecasting—a combined filtering and error forecasting procedure , 2005 .

[62]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[63]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[64]  S. Sorooshian,et al.  Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model , 2006, Journal of Hydrology.

[65]  M. Clark,et al.  Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters , 2006 .

[66]  Soroosh Sorooshian,et al.  A 'User-Friendly' approach to parameter estimation in hydrologic models , 2006 .

[67]  Peter M. A. Sloot,et al.  Application of parallel computing to stochastic parameter estimation in environmental models , 2006, Comput. Geosci..

[68]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .