Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa–Wielgosz scheme

The use of Finite Element and Finite Difference methods of spatial and temporal discretization for solving structural dynamics problems gives rise to purely numerical errors. Among the many numerical methods used to damp out the spurious oscillations occurring in the high frequency domain, it is proposed here to analyse and compare the Bulk Viscosity method, which involves calculating the stresses, and a method recently presented by Tchamwa and Wielgosz, which is based on an explicit time integration algorithm. The 1-D study and the 2-D axisymmetric study on a bar subjected to compression and impact loads presented here show that the former method is insensitive to meshing irregularities, whereas the latter method is not. The Bulk Viscosity method was found to be sensitive, however, to the behavior of the material, contrary to the Tchamwa–Wielgosz method. Since comparisons of this kind are rather complex, a specific method of analysis was developed.

[1]  Radek Kolman,et al.  Dispersion of elastic waves in the contact-impact problem of a long cylinder , 2010, J. Comput. Appl. Math..

[2]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[3]  Wanming Zhai,et al.  TWO SIMPLE FAST INTEGRATION METHODS FOR LARGE‐SCALE DYNAMIC PROBLEMS IN ENGINEERING , 1996 .

[4]  D. Bancroft The Velocity of Longitudinal Waves in Cylindrical Bars , 1941 .

[5]  H. J. Martin,et al.  Highlights of the reaction π^-p→π^-π^+n at 100 and 175 GeV/c , 1984 .

[6]  T. Fung,et al.  Numerical dissipation in time-step integration algorithms for structural dynamic analysis , 2003 .

[7]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[8]  L. Pochhammer,et al.  Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. , 1876 .

[9]  Trefftz,et al.  Vibration Problems in Engineering. By S. Timoshenko, New York, D. Van Nostrand, Inc. 19Z8. , 1929 .

[10]  Laurent Mahéo Etude des effets dissipatifs de différents schémas d'intégration temporelle en calcul dynamique par éléments finis , 2006 .

[11]  Bertrand Tchamwa Contribution a l'etude des methodes d'integration directe explicites en dynamique non lineaire des structures , 1997 .

[12]  de Adnan Ibrahimbegovic Mécanique non linéaire des solides déformables , 2007 .

[13]  Jintai Chung,et al.  Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .

[14]  Eugenio Aulisa,et al.  Benchmark problems for wave propagation in elastic materials , 2009 .

[15]  R. Landshoff,et al.  A Numerical Method for Treating Fluid Flow in the Presence of Shocks , 1955 .

[16]  G. Rio,et al.  Une comparaison des schémas d'intégration temporelle explicites de Chung–Lee et Tchamwa–Wielgosz , 2004 .

[17]  R. Davies A critical study of the Hopkinson pressure bar , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[19]  Jintai Chung,et al.  A new family of explicit time integration methods for linear and non‐linear structural dynamics , 1994 .

[20]  Frantisek Vales,et al.  Wave Propagation in a Thick Cylindrical Bar Due to Longitudinal Impact , 1996 .

[21]  Gérard Rio,et al.  Comparative study of numerical explicit time integration algorithms , 2002, Adv. Eng. Softw..

[22]  J. Zemanek,et al.  An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder , 1962 .

[23]  R. L. Sierakowski,et al.  A new explicit predictor–multicorrector high-order accurate method for linear elastodynamics , 2008 .

[24]  G. R. Johnson,et al.  Damping algorithms and effects for explicit dynamics computations , 2001 .

[25]  K. Graff Wave Motion in Elastic Solids , 1975 .

[26]  Ludovic Noels,et al.  Comparative study of numerical explicit schemes for impact problems , 2008 .

[27]  K. Mocellin,et al.  Explicit F.E. formulation with modified linear tetrahedral elements applied to high speed forming processes , 2008 .

[28]  Alexander V. Idesman,et al.  A new high-order accurate continuous Galerkin method for linear elastodynamics problems , 2007 .

[29]  Robert J. Rogers,et al.  Effects of spatial discretization on dispersion and spurious oscillations in elastic wave propagation , 1990 .

[30]  Alexander V. Idesman,et al.  SOLUTION OF LINEAR ELASTODYNAMICS PROBLEMS WITH SPACE-TIME FINITE ELEMENTS ON STRUCTURED AND UNSTRUCTURED MESHES , 2007 .

[31]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[32]  Gérard Rio,et al.  Damping efficiency of the Tchamwa–Wielgosz explicit dissipative scheme under instantaneous loading conditions , 2009 .

[33]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .