Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa–Wielgosz scheme
暂无分享,去创建一个
G. Rio | V. Grolleau | L. Mahéo | G. Rio | L. Maheo | V. Grolleau
[1] Radek Kolman,et al. Dispersion of elastic waves in the contact-impact problem of a long cylinder , 2010, J. Comput. Appl. Math..
[2] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[3] Wanming Zhai,et al. TWO SIMPLE FAST INTEGRATION METHODS FOR LARGE‐SCALE DYNAMIC PROBLEMS IN ENGINEERING , 1996 .
[4] D. Bancroft. The Velocity of Longitudinal Waves in Cylindrical Bars , 1941 .
[5] H. J. Martin,et al. Highlights of the reaction π^-p→π^-π^+n at 100 and 175 GeV/c , 1984 .
[6] T. Fung,et al. Numerical dissipation in time-step integration algorithms for structural dynamic analysis , 2003 .
[7] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[8] L. Pochhammer,et al. Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. , 1876 .
[9] Trefftz,et al. Vibration Problems in Engineering. By S. Timoshenko, New York, D. Van Nostrand, Inc. 19Z8. , 1929 .
[10] Laurent Mahéo. Etude des effets dissipatifs de différents schémas d'intégration temporelle en calcul dynamique par éléments finis , 2006 .
[11] Bertrand Tchamwa. Contribution a l'etude des methodes d'integration directe explicites en dynamique non lineaire des structures , 1997 .
[12] de Adnan Ibrahimbegovic. Mécanique non linéaire des solides déformables , 2007 .
[13] Jintai Chung,et al. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .
[14] Eugenio Aulisa,et al. Benchmark problems for wave propagation in elastic materials , 2009 .
[15] R. Landshoff,et al. A Numerical Method for Treating Fluid Flow in the Presence of Shocks , 1955 .
[16] G. Rio,et al. Une comparaison des schémas d'intégration temporelle explicites de Chung–Lee et Tchamwa–Wielgosz , 2004 .
[17] R. Davies. A critical study of the Hopkinson pressure bar , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[18] Thomas J. R. Hughes,et al. Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .
[19] Jintai Chung,et al. A new family of explicit time integration methods for linear and non‐linear structural dynamics , 1994 .
[20] Frantisek Vales,et al. Wave Propagation in a Thick Cylindrical Bar Due to Longitudinal Impact , 1996 .
[21] Gérard Rio,et al. Comparative study of numerical explicit time integration algorithms , 2002, Adv. Eng. Softw..
[22] J. Zemanek,et al. An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder , 1962 .
[23] R. L. Sierakowski,et al. A new explicit predictor–multicorrector high-order accurate method for linear elastodynamics , 2008 .
[24] G. R. Johnson,et al. Damping algorithms and effects for explicit dynamics computations , 2001 .
[25] K. Graff. Wave Motion in Elastic Solids , 1975 .
[26] Ludovic Noels,et al. Comparative study of numerical explicit schemes for impact problems , 2008 .
[27] K. Mocellin,et al. Explicit F.E. formulation with modified linear tetrahedral elements applied to high speed forming processes , 2008 .
[28] Alexander V. Idesman,et al. A new high-order accurate continuous Galerkin method for linear elastodynamics problems , 2007 .
[29] Robert J. Rogers,et al. Effects of spatial discretization on dispersion and spurious oscillations in elastic wave propagation , 1990 .
[30] Alexander V. Idesman,et al. SOLUTION OF LINEAR ELASTODYNAMICS PROBLEMS WITH SPACE-TIME FINITE ELEMENTS ON STRUCTURED AND UNSTRUCTURED MESHES , 2007 .
[31] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[32] Gérard Rio,et al. Damping efficiency of the Tchamwa–Wielgosz explicit dissipative scheme under instantaneous loading conditions , 2009 .
[33] Stephen P. Timoshenko,et al. Vibration problems in engineering , 1928 .