The influences of jet precession on large-scale instantaneous turbulent particle clusters

[1]  P. Kalt,et al.  A method to provide statistical measures of large-scale instantaneous particle clusters from planar images , 2011 .

[2]  P. Kalt,et al.  The influences of jet precession on near field particle distributions , 2009 .

[3]  R. Kelso,et al.  The naturally oscillating flow emerging from a fluidic precessing jet nozzle , 2008, Journal of Fluid Mechanics.

[4]  P. Kalt,et al.  Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, part 1: collimated laser sheets. , 2007, Applied optics.

[5]  N. Selçuk,et al.  Effect of particle polydispersity on particle concentration measurement by using laser Doppler anemometry , 2007 .

[6]  Zeyad T. Alwahabi,et al.  Impacts of a jet's exit flow pattern on mixing and combustion performance , 2006 .

[7]  T. Uchiyama,et al.  Vortex simulation of gas-particle two-phase compound round jet , 2006 .

[8]  J. J. Parham,et al.  A MODIFIED THRING–NEWBY SCALING CRITERION FOR CONFINED, RAPIDLY SPREADING, AND UNSTEADY JETS , 2005 .

[9]  J. Mi,et al.  Self-excited jet-precession Strouhal number and its influence on downstream mixing field , 2004 .

[10]  Y. Hardalupas,et al.  Fluctuations of particle concentration in a turbulent two-phase shear layer , 2003 .

[11]  P. V. Lanspeary,et al.  Phase-averaged velocity in a fluidic precessing jet nozzle and in its near external field , 2003 .

[12]  T. Kajishima,et al.  Interaction between particle clusters and particle-induced turbulence , 2002 .

[13]  Ajay K. Prasad,et al.  Organizational Modes of Large-Scale Vortices in an Axisymmetric Turbulent Jet , 2002 .

[14]  Yoshimichi Hagiwara,et al.  Turbulence modification by the clusters of settling particles in turbulent water flow in a horizontal duct , 2002 .

[15]  Lian-Ping Wang,et al.  Linear instability of two-way coupled particle-laden jet , 2001 .

[16]  Jonathan J. Wylie,et al.  Particle clustering due to hydrodynamic interactions , 2000 .

[17]  C. Richards,et al.  The structure of an acoustically forced, reacting two-phase jet , 2000 .

[18]  N. L. Smith,et al.  Precessing jet burners for stable and low NOx pulverised fuel flames - preliminary results from small-scale trials , 1998 .

[19]  N. Syred,et al.  Velocity measurements in a precessing jet flow using a three dimensional LDA system , 1997 .

[20]  A. Musgrove,et al.  Velocity and Reynolds stresses in a precessing jet flow , 1997 .

[21]  S. Aggarwal Relationship between Stokes number and intrinsic frequencies in particle-laden flows , 1994 .

[22]  F. Lockwood,et al.  The effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace: Measurements and modeling , 1993 .

[23]  T. Wall,et al.  An analysis of the ignition of coal dust clouds , 1993 .

[24]  W. Dahm,et al.  Vortex structure and dynamics in the near field of a coaxial jet , 1992, Journal of Fluid Mechanics.

[25]  Ellen K. Longmire,et al.  Structure of a particle-laden round jet , 1992, Journal of Fluid Mechanics.

[26]  W. Ryan,et al.  Group Ignition of a Cloud of Coal Particles , 1991 .

[27]  H. Zhao,et al.  Particle concentration and particle size measurements in a particle laden turbulent free jet , 1990 .

[28]  Paul E. Dimotakis,et al.  Mixing at large Schmidt number in the self-similar far field of turbulent jets , 1990, Journal of Fluid Mechanics.

[29]  K. Squires,et al.  Particle response and turbulence modification in isotropic turbulence , 1990 .

[30]  Yannis Hardalupas,et al.  Velocity and particle-flux characteristics of turbulent particle-laden jets , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  R. Piva,et al.  Two-way coupling effects in dilute gas-particle flows/sup 1/ , 1982 .

[32]  Norman Chigier,et al.  Studies in convection: Vol. 2. Academic press (1977) , 1979 .

[33]  S. Crow,et al.  Orderly structure in jet turbulence , 1971, Journal of Fluid Mechanics.

[34]  G. Batchelor,et al.  The stress generated in a non-dilute suspension of elongated particles by pure straining motion , 1971, Journal of Fluid Mechanics.

[35]  P. Kalt,et al.  A method to characterise jets using correlations of large-scale features in instantaneous planar images , 2010 .

[36]  P. Kalt Correcting saturation of detectors for particle/droplet imaging methods , 2009 .

[37]  A. Sadiki,et al.  Investigation of turbulence modification in a non-reactive two-phase flow , 2004 .

[38]  N. L. Smith,et al.  The potential for low NOx from a Precessing Jet burner of coal , 2001 .

[39]  N. L. Smith,et al.  Performance characteristics of, and an aerodynamic scaling parameter for, a practical PF burner design employing jet excitation to promote particle clustering , 2000 .

[40]  N. L. Smith,et al.  The role of fuel-rich clusters in flame stabilization and NOx emission reduction with precessing jet pulverized fuel flames , 1998 .

[41]  S. Turns,et al.  The Influence of Fuel Jet Precession on the Global Properties and Emissions of Unconfined Turbulent Flames , 1996 .

[42]  G. Nathan,et al.  The role of process and flame interaction in reducing NOx emissions , 1995 .

[43]  H. A. Becker,et al.  Concentration fluctuations in ducted turbulent jets , 1967 .

[44]  H. A. Becker,et al.  Concentration intermittency in jets , 1965 .

[45]  H. Cassel,et al.  The cooperative mechanism in the ignition of dust dispersions , 1959 .