Curved Voronoi diagrams
暂无分享,去创建一个
[1] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[2] D. S. Arnon,et al. Algorithms in real algebraic geometry , 1988 .
[3] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.
[4] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[5] William Pugh,et al. Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.
[6] Vladlen Koltun. Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[7] Kurt Mehlhorn,et al. Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..
[8] Ioannis Z. Emiris,et al. ECG IST-2000-26473 Effective Computational Geometry for Curves and Surfaces ECG Technical Report No . : ECG-TR-122201-01 Predicates for the Planar Additively Weighted Voronoi Diagram , 1993 .
[9] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[10] Herbert Edelsbrunner,et al. Triangulating topological spaces , 1994, SCG '94.
[11] S. P. Mudur,et al. Three-dimensional computer vision: a geometric viewpoint , 1993 .
[12] M. Sabin,et al. Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .
[13] Otfried Cheong,et al. The Voronoi Diagram of Curved Objects , 1995, SCG '95.
[14] Jean-Daniel Boissonnat,et al. Output-sensitive construction of the {Delaunay} triangulation of points lying in two planes , 1996, Int. J. Comput. Geom. Appl..
[15] M. Price,et al. Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .
[16] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[17] Hans-Martin Will. Fast and Efficient Computation of Additively Weighted Voronoi Cells for Applications in Molecular Biology , 1998, SWAT.
[18] R. Farouki,et al. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations , 1999 .
[19] Alla Sheffer,et al. Hexahedral meshing of non-linear volumes using Voronoi faces and edges , 2000 .
[20] David Letscher,et al. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.
[21] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[22] Marina L. Gavrilova,et al. The Voronoi-Delaunay Approach for Modeling the Packing of Balls in a Cylindrical Container , 2001, International Conference on Computational Science.
[23] Jeff Erickson,et al. Dense point sets have sparse Delaunay triangulations , 2001, ArXiv.
[24] Mariette Yvinec,et al. Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.
[25] Olivier Devillers,et al. The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..
[26] Jonathan Richard Shewchuk,et al. Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.
[27] André Lieutier,et al. Any open bounded subset of Rn has the same homotopy type than its medial axis , 2003, SM '03.
[28] Tamal K. Dey,et al. Approximate medial axis for CAD models , 2003, SM '03.
[29] Ioannis Z. Emiris,et al. Root comparison techniques applied to computing the additively weighted Voronoi diagram , 2003, SODA '03.
[30] Mariette Yvinec,et al. The Voronoi Diagram of Convex Objects in the Plane , 2003 .
[31] Jean-Daniel Boissonnat,et al. Sur la complexité combinatoire des cellules des diagrammes de Voronoï Euclidiens et des enveloppes convexes de sphères de , 2022 .
[32] Jean-Daniel Boissonnat,et al. Complexity of the delaunay triangulation of points on surfaces the smooth case , 2003, SCG '03.
[33] Joseph S. B. Mitchell,et al. Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[34] M. Karavelas. A robust and efficient implementation for the segment Voronoi diagram , 2004 .
[35] Frédéric Chazal,et al. The "lambda-medial axis" , 2005, Graph. Model..
[36] Steve Oudot,et al. Provably good sampling and meshing of surfaces , 2005, Graph. Model..
[37] Jean-Daniel Boissonnat,et al. Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.
[38] Deok-Soo Kim,et al. Pocket Recognition on a Protein Using Euclidean Voronoi Diagram of Atoms , 2005, ICCSA.
[39] Ioannis Z. Emiris,et al. The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..
[40] G. Swaminathan. Robot Motion Planning , 2006 .
[41] P. Lockhart. INTRODUCTION TO GEOMETRY , 2007 .