Conical intersections and double excitations in time-dependent density functional theory

There is a clear need for computationally inexpensive electronic structure theory methods which can model excited state potential energy surfaces. Time-dependent density functional theory (TDDFT) has emerged as one of the most promising contenders in this context. Many previous tests have concentrated on vertical excitation energies, which can be compared to experimental absorption maxima. Here, we focus attention on more global aspects of the resulting potential energy surfaces, especially conical intersections which play a key role in photochemical mechanisms. We introduce a new method for minimal energy conical intersection (MECI) searches which does not require knowledge of the non-adiabatic coupling vector. Using this new method, we compute MECI geometries with multi-state complete active space perturbation theory (MS-CASPT2) and TDDFT. We show that TDDFT in the linear response and adiabatic approximations can predict MECI geometries and energetics quite accurately, but that there are a number of qualitative deficiencies which need to be addressed before TDDFT can be used routinely in photochemical problems. †Dedicated to Professor M. A. Robb on the occasion of his 60th birthday.

[1]  Bjoern O. Roos Theoretical Studies of Electronically Excited States of Molecular Systems Using Multiconfigurational Perturbation Theory , 1999 .

[2]  I. N. Ragazos,et al.  A conical intersection mechanism for the photochemistry of butadiene. A MC-SCF study , 1993 .

[3]  E. Gross,et al.  Spurious interactions, and their correction, in the ensemble-Kohn-Sham scheme for excited States. , 2002, Physical review letters.

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  Anna I. Krylov,et al.  The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals , 2003 .

[6]  Klaus Ruedenberg,et al.  Potential energy surfaces near intersections , 1991 .

[7]  Juergen Hinze,et al.  LiH Potential Curves and Wavefunctions for X 1Σ+, A 1Σ+, B 1Π, 3Σ+, and 3Π , 1972 .

[8]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[9]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[10]  Michael J. Bearpark,et al.  Product Distribution in the Photolysis of s-cis Butadiene: A Dynamics Simulation , 2001 .

[11]  E. Gross,et al.  Multicomponent density-functional theory for electrons and nuclei. , 2001, Physical review letters.

[12]  K. Burke,et al.  Theoretical Investigation of the Ground and Excited States of Coumarin 151 and Coumarin 120 , 2002 .

[13]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[14]  Michael J. Bearpark,et al.  A direct method for the location of the lowest energy point on a potential surface crossing , 1994 .

[15]  T. Martínez,et al.  Ab initio molecular dynamics study of cis–trans photoisomerization in ethylene , 1998 .

[16]  R. Fletcher,et al.  Practical Methods of Optimization: Fletcher/Practical Methods of Optimization , 2000 .

[17]  Marco Garavelli,et al.  The C 5 H 6 NH 2 + Protonated Shiff Base: An ab Initio Minimal Model for Retinal Photoisomerization , 1997 .

[18]  T. Martínez,et al.  Direct Observation of Disrotatory Ring-Opening in Photoexcited Cyclobutene Using ab Initio Molecular Dynamics , 2000 .

[19]  Todd J Martinez,et al.  The role of intersection topography in bond selectivity of cis-trans photoisomerization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Salahub,et al.  Asymptotic correction approach to improving approximate exchange–correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra , 2000 .

[21]  Martin Klessinger,et al.  Excited states and photochemistry of organic molecules , 1995 .

[22]  S. Mukamel,et al.  Density-matrix representation of nonadiabatic couplings in time-dependent density functional (TDDFT) theories , 2000 .

[23]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[24]  Soto,et al.  An ab initio study of the photochemical decomposition of 3, 3-dimethyldiazirine , 2000, The Journal of organic chemistry.

[25]  R. Baer Non-adiabatic couplings by time-dependent density functional theory , 2002 .

[26]  N. Handy,et al.  Excitation energies of benzene from Kohn–Sham theory , 1999 .

[27]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[28]  Luis Serrano-Andrés,et al.  Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds , 1999 .

[29]  D. Salahub,et al.  Time-dependent density-functional theory investigation of excitation spectra of open-shell molecules , 2000 .

[30]  Todd J. Martínez,et al.  Photodynamics of ethylene: ab initio studies of conical intersections , 2000 .

[31]  Mark Earl Casida,et al.  In Recent Advances in Density-Functional Methods , 1995 .

[32]  Todd J. Martínez,et al.  Photochemistry from first principles — advances and future prospects , 2001 .

[33]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[34]  M. Head‐Gordon,et al.  Excitation Energies from Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Butadiene to Decapentaene , 2001 .

[35]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[36]  Fan Zhang,et al.  A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene , 2004 .

[37]  Hans-Joachim Werner,et al.  Ab initio excited-state dynamics of the photoactive yellow protein chromophore. , 2003, Journal of the American Chemical Society.

[38]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[39]  M. Robb,et al.  Intramolecular electron transfer in bis(methylene) adamantyl radical cation: a case study of diabatic trapping. , 2005, Journal of the American Chemical Society.

[40]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[41]  D. Yarkony,et al.  Conical Intersections: Diabolical and Often Misunderstood , 1998 .

[42]  W. Mei,et al.  Basis set effects on spectroscopic constants for C2 and Si2 and the symmetry dilemma in the Xα model , 1983 .

[43]  R. Fletcher Practical Methods of Optimization , 1988 .

[44]  T. Martínez,et al.  Ab Initio Study of Cis−Trans Photoisomerization in Stilbene and Ethylene , 2003 .

[45]  Kieron Burke,et al.  Memory in time-dependent density functional theory. , 2002, Physical review letters.

[46]  Nicholas C. Handy,et al.  Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .

[47]  E K U Gross,et al.  Excitations in time-dependent density-functional theory. , 2003, Physical review letters.

[48]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[49]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[50]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[51]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[52]  F. Bernardi,et al.  What Happens during the Picosecond Lifetime of 2A1 Cyclohexa-1,3-diene? A CAS-SCF Study of the Cyclohexadiene/Hexatriene Photochemical Interconversion , 1994 .

[53]  F. Gadéa,et al.  Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: Analysis within the two-level model with illustration for H2 and LiH , 2000 .

[54]  T. Martínez,et al.  Ab Initio Multiple Spawning: Photochemistry from First Principles Quantum Molecular Dynamics , 2000 .

[55]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[56]  Kieron Burke,et al.  Double excitations within time-dependent density functional theory linear response. , 2004, The Journal of chemical physics.

[57]  Stefan Grimme,et al.  Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  T. Martínez Ab initio molecular dynamics around a conical intersection: Li(2p) + H2 , 1997 .

[59]  Ab initio molecular dynamics with equation-of-motion coupled-cluster theory: electronic absorption spectrum of ethylene , 2003 .

[60]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[61]  M Elstner,et al.  A global investigation of excited state surfaces within time-dependent density-functional response theory. , 2004, The Journal of chemical physics.

[62]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[63]  M. Petersilka,et al.  Molecular excitation energies from time-dependent density functional theory , 2000 .

[64]  L. Salem,et al.  Classification of photochemical reactions , 1975 .

[65]  S. Wang,et al.  SIMULATION OF NONDYNAMICAL CORRELATION IN DENSITY FUNCTIONAL CALCULATIONS BY THE OPTIMIZED FRACTIONAL ORBITAL OCCUPATION APPROACH : APPLICATION TO THE POTENTIAL ENERGY SURFACES OF O3 AND SO2 , 1996 .

[66]  T. Martínez,et al.  Ab initio equation-of-motion coupled-cluster molecular dynamics with ‘on-the-fly’ diabatization: the doublet-like feature in the photoabsorption spectrum of ethylene , 2004 .

[67]  Albert Stolow,et al.  Mechanism and dynamics of azobenzene photoisomerization. , 2003, Journal of the American Chemical Society.

[68]  Thom Vreven,et al.  Ab Initio Photoisomerization Dynamics of a Simple Retinal Chromophore Model , 1997 .

[69]  F. Bernardi,et al.  Conical intersections as a mechanistic feature of organic photochemistry , 1995 .

[70]  Todd J. Martínez,et al.  Ab Initio Quantum Molecular Dynamics , 2002 .

[71]  G. Habermehl,et al.  ReviewPure appl. Chem: Rinehart, K. L., et al. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic Agents. 53, 795 (1981). (K. L. Rinehart, University of Illinois, Urbana, IL 61801, U.S.A.) , 1983 .

[72]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[73]  D. Yarkony Nuclear dynamics near conical intersections in the adiabatic representation: I. The effects of local topography on interstate transitions , 2001 .

[74]  D. Yarkony Diabolical conical intersections , 1996 .

[75]  Barry R. Smith,et al.  Relaxation Paths from a Conical Intersection: The Mechanism of Product Formation in the Cyclohexadiene/Hexatriene Photochemical Interconversion , 1997 .

[76]  F. Bernardi,et al.  Ab initio MC-SCF study of thermal and photochemical [2 + 2] cycloadditions , 1994 .

[77]  Fernando Bernardi,et al.  Excited‐state reaction pathways for s‐cis buta‐1,3‐diene , 1995 .

[78]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[79]  T. Vreven,et al.  Modeling Photochemical [4 + 4] Cycloadditions: Conical Intersections Located with CASSCF for Butadiene + Butadiene , 1997 .

[80]  D. Yarkony,et al.  On the intersection of two potential energy surfaces of the same symmetry. Systematic characterization using a Lagrange multiplier constrained procedure , 1993 .

[81]  D. Salahub,et al.  Excited-state potential energy curves from time-dependent density-functional theory: A cross section of formaldehyde's 1A1 manifold , 1998 .

[82]  K. Freed,et al.  Ab initio study of the trans‐butadiene π‐valence states using the effective valence shell Hamiltonian method , 1992 .