Nonreciprocal sound propagation in space-time modulated media

Realization of non-reciprocal devices, such as isolators and circulators, is of fundamental importance in microwave and photonic communication systems. This can be achieved by breaking time-reversal symmetry in the system or exploiting nonlinearity and topological effects. However, exploration of non-reciprocal devices remains scarce in acoustic systems. In this work, sound propagation in a space-time modulated medium is theoretically studied. Finite-difference time-domain (FDTD) simulations are carried out to verify the results. Functionalities such as mode conversion, parametric amplification and phase conjugation are demonstrated.

[1]  P. Baccarelli IEEE Antennas and Wireless Propagation Letters , 2018, IEEE Antennas and Wireless Propagation Letters.

[2]  Arnaud Brignon,et al.  Phase conjugate laser optics , 2005 .

[3]  M. Haberman,et al.  Non-reciprocal wave propagation in modulated elastic metamaterials , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Bin Liang,et al.  Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. , 2009, Physical review letters.

[5]  B. Eggleton,et al.  Design for broadband on-chip isolator using Stimulated Brillouin Scattering in dispersion-engineered chalcogenide waveguides. , 2012, Optics express.

[6]  Andrea Alù,et al.  Broadband passive isolators based on coupled nonlinear resonances , 2018 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  C. Caloz,et al.  Mixer-Duplexer-Antenna Leaky-Wave System Based on Periodic Space-Time Modulation , 2016, IEEE Transactions on Antennas and Propagation.

[9]  D. Sounas,et al.  Time-Reversal Symmetry Bounds on the Electromagnetic Response of Asymmetric Structures. , 2017, Physical review letters.

[10]  Sam-Hyeon Lee,et al.  Acoustic metamaterial with negative modulus , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Nader Engheta,et al.  NEMS With Broken T Symmetry: Graphene Based Unidirectional Acoustic Transmission Lines , 2015, Scientific Reports.

[12]  A. Alú,et al.  Space-time gradient metasurfaces , 2015, 1506.00690.

[13]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[14]  Guang S. He,et al.  Optical phase conjugation: principles, techniques, and applications , 2002 .

[15]  W. Marsden I and J , 2012 .

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  Topological Photonics , 2014, 1408.6730.

[18]  P. K. Tien,et al.  Parametric Amplification and Frequency Mixing in Propagating Circuits , 1958 .

[19]  Yuanxun Ethan Wang,et al.  Nonreciprocal Components With Distributedly Modulated Capacitors , 2014, IEEE Transactions on Microwave Theory and Techniques.

[20]  J.-C. Simon,et al.  Action of a Progressive Disturbance on a Guided Electromagnetic Wave , 1960 .

[21]  R. Fleury,et al.  Coupled-mode theory for stationary and nonstationary resonant sound propagation , 2018, Wave Motion.

[22]  G. Theocharis,et al.  Bifurcation-based acoustic switching and rectification. , 2011, Nature materials.

[23]  Experimental Demonstration of Acoustic Chern Insulators. , 2019, Physical review letters.

[24]  Xu Ni,et al.  Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow , 2015, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[25]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[26]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[27]  A. Alvarez-Melcon,et al.  Nonreciprocal Graphene Devices and Antennas Based on Spatiotemporal Modulation , 2016, IEEE Antennas and Wireless Propagation Letters.

[28]  A. Oliner,et al.  Wave Propagation in a Medium with a Progressive Sinusoidal Disturbance , 1961 .

[29]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[30]  Guoliang Huang,et al.  Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice. , 2018, Physical review letters.

[31]  Andrea Alù,et al.  Angular-Momentum-Biased Nanorings To Realize Magnetic-Free Integrated Optical Isolation , 2014 .

[32]  Steven A Cummer,et al.  Non-reciprocal and highly nonlinear active acoustic metamaterials , 2014, Nature Communications.

[33]  H. Rowe,et al.  Some General Properties of Nonlinear Elements-Part I. General Energy Relations , 1956, Proceedings of the IRE.

[34]  Andrea Alù,et al.  Subwavelength ultrasonic circulator based on spatiotemporal modulation , 2015 .

[35]  A. Cullen,et al.  A Travelling-Wave Parametric Amplifier , 1958, Nature.

[36]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[37]  Zach DeVito,et al.  Opt , 2017 .

[38]  Gennady Shvets,et al.  Two-dimensional topological photonics , 2017, Nature Photonics.

[39]  P. K. Tien,et al.  A Traveling-Wave Ferromagnetic Amplifier , 1958, Proceedings of the IRE.

[40]  Xue-Feng Zhu,et al.  P T -Symmetric Acoustics , 2014 .

[41]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[42]  S Saeidi,et al.  IEEE Transactions on Antennas and Propagation , 2018, IEEE Transactions on Antennas and Propagation.

[43]  A. A. Oliner,et al.  Dispersion relations in time-space periodic media part II—Unstable interactions , 1963 .

[44]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[45]  C. Elachi Electromagnetic wave propagation and wave-vector diagram in space-time periodic media , 1972 .

[46]  A. Brysev,et al.  Wave phase conjugation of ultrasonic beams , 1998 .

[47]  Massimo Ruzzene,et al.  Non-reciprocal elastic wave propagation in spatiotemporal periodic structures , 2016, 1605.00734.

[48]  L. Davis,et al.  Ferrite devices and materials , 2002 .

[49]  Optomechanically induced non-reciprocity in microring resonators. , 2011, Optics express.

[50]  Jason Soric,et al.  Breaking temporal symmetries for emission and absorption , 2016, Proceedings of the National Academy of Sciences.

[51]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[52]  Andrea Alù,et al.  Nonreciprocity and magnetic-free isolation based on optomechanical interactions , 2016, Nature Communications.

[53]  P. Sheng,et al.  Active control of membrane-type acoustic metamaterial by electric field , 2015 .

[54]  P. Sheng,et al.  Acoustic metasurface with hybrid resonances. , 2014, Nature materials.

[55]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[56]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[57]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[58]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[59]  M. Miri,et al.  Fundamentals of optical non-reciprocity based on optomechanical coupling , 2016, 1612.07375.

[60]  Ericka Stricklin-Parker,et al.  Ann , 2005 .