Nonwetting “white graphene” films

[1]  C. Zhi,et al.  Low-dimensional boron nitride nanomaterials , 2012 .

[2]  X. Zeng,et al.  Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. , 2012, ACS nano.

[3]  C. Zhi,et al.  Boron nitride nanosheet coatings with controllable water repellency. , 2011, ACS nano.

[4]  Glen McHale,et al.  An introduction to superhydrophobicity. , 2010, Advances in colloid and interface science.

[5]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[6]  Y. Chen,et al.  Superhydrophobic properties of nonaligned boron nitride nanotube films. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  X. Bai,et al.  Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. , 2010, ACS nano.

[8]  J. Drelich,et al.  Superhydrophobicity of boron nitride nanotubes grown on silicon substrates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[9]  J. Zou,et al.  Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. , 2008, ACS nano.

[10]  Hui Yan,et al.  Preparation of transparent BN films with superhydrophobic surface , 2008 .

[11]  A. Gomathi,et al.  Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride , 2008 .

[12]  Y. Lai,et al.  Superhydrophilic-superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography , 2008 .

[13]  Michael Newton,et al.  Progess in superhydrophobic surface development. , 2008, Soft matter.

[14]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[15]  Pablo G Debenedetti,et al.  Effect of surface polarity on water contact angle and interfacial hydration structure. , 2007, The journal of physical chemistry. B.

[16]  C. Zhi,et al.  Characteristics of boron nitride nanotube-polyaniline composites. , 2005, Angewandte Chemie.

[17]  Z. Pan,et al.  Low temperature growth of boron nitride nanotubes on substrates. , 2005, Nano letters.

[18]  C. Zhi,et al.  Effective precursor for high yield synthesis of pure BN nanotubes , 2005 .

[19]  Joong Tark Han,et al.  Diverse access to artificial superhydrophobic surfaces using block copolymers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[20]  Xiaoyuan Li,et al.  Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. , 2004, Journal of the American Chemical Society.

[21]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[22]  Jin Zhai,et al.  Super‐Hydrophobic Surfaces: From Natural to Artificial , 2002 .

[23]  Hongwei Zhu,et al.  Hydrogen uptake in boron nitride nanotubes at room temperature. , 2002, Journal of the American Chemical Society.

[24]  Tomohiro Onda,et al.  Super Oil‐Repellent Surfaces , 1997 .

[25]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[26]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[27]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[28]  Ernesto Occhiello,et al.  Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene) , 1989 .

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[31]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[32]  G. L. Mack,et al.  The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles. , 1935 .