Comparing evolution of precipitates and strength upon aging of cast and laser-remelted Al-8Ce-0.2Sc-0.1Zr (wt.%).

[1]  Zhi-gang Wang,et al.  Beneficial effects of Sc/Zr addition on hypereutectic Al–Ce alloys: Modification of primary phases and precipitation hardening , 2022, Materials Science and Engineering: A.

[2]  R. Ott,et al.  Enhanced thermal coarsening resistance in a nanostructured aluminum-cerium alloy produced by additive manufacturing , 2021 .

[3]  Yueling Guo,et al.  Microstructure diversity dominated by the interplay between primary intermetallics and eutectics for Al-Ce heat-resistant alloys , 2021, Journal of Alloys and Compounds.

[4]  D. Leonard,et al.  Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy , 2021, Acta Materialia.

[5]  Zhong-wei Chen,et al.  Nucleation and growth of Al3Sc precipitates during isothermal aging of Al-0.55 wt% Sc alloy , 2021 .

[6]  W. Ding,et al.  Effect of Zr and Sc micro-additions on the microstructure and mechanical properties of as-cast Al-5Ce alloy , 2021, Materials Science and Engineering: A.

[7]  Haiyan Gao,et al.  Enhanced load transfer and ductility in Al–9Ce alloy through heterogeneous lamellar microstructure design by cold rolling and annealing , 2021, Materials Science and Engineering: A.

[8]  S. Babu,et al.  Towards high-temperature applications of aluminium alloys enabled by additive manufacturing , 2021, International Materials Reviews.

[9]  Sheng-wu Guo,et al.  Improving creep resistance of Al-12 wt.% Ce alloy by microalloying with Sc , 2021, Scripta Materialia.

[10]  J. Schoenung,et al.  Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications , 2021, Materials Today.

[11]  B. McWilliams,et al.  Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion , 2021 .

[12]  Aiden A. Martin,et al.  Enhanced mechanical performance via laser induced nanostructure formation in an additively manufactured lightweight aluminum alloy , 2021 .

[13]  F. Czerwinski Thermal stability of aluminum–cerium binary alloys containing the Al–Al11Ce3 eutectic , 2021 .

[14]  J. Segurado,et al.  Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ′′ precipitates , 2021, 2102.08875.

[15]  D. Seidman,et al.  Individual and synergistic effects of Mn and Mo micro-additions on precipitation and strengthening of a dilute Al–Zr-Sc-Er-Si alloy , 2021 .

[16]  D. Leonard,et al.  Microstructure and properties of additively manufactured Al–Ce–Mg alloys , 2020, Scientific Reports.

[17]  D. Seidman,et al.  Effects of W micro-additions on precipitation kinetics and mechanical properties of an Al–Mn–Mo–Si–Zr–Sc–Er alloy , 2020 .

[18]  P. Rometsch,et al.  Effects of Al(MnFe)Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content , 2020 .

[19]  J. O. Milewski,et al.  Metallurgy, mechanistic models and machine learning in metal printing , 2020, Nature Reviews Materials.

[20]  A. Plotkowski,et al.  Microstructure and properties of a high temperature Al–Ce–Mn alloy produced by additive manufacturing , 2020 .

[21]  E. Olivetti,et al.  Sustainability through alloy design: Challenges and opportunities , 2020 .

[22]  L. Allard,et al.  The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys , 2020 .

[23]  C. Kenel,et al.  Synthesis of precipitation-strengthened Al-Sc, Al-Zr and Al-Sc-Zr alloys via selective laser melting of elemental powder blends , 2020 .

[24]  B. McWilliams,et al.  Laser powder bed fusion of Al–10 wt% Ce alloys: microstructure and tensile property , 2020, Journal of Materials Science.

[25]  D. Dunand,et al.  Aging- and creep-resistance of a cast hypoeutectic Al-6.9Ce-9.3Mg (wt.%) alloy , 2020 .

[26]  Kun Liu,et al.  Enhanced mechanical properties of high-temperature-resistant Al–Cu cast alloy by microalloying with Mg , 2020, Journal of Alloys and Compounds.

[27]  C. Leinenbach,et al.  Coarsening- and creep resistance of precipitation-strengthened Al–Mg–Zr alloys processed by selective laser melting , 2020 .

[28]  D. Dunand,et al.  Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance , 2019, Materials Science and Engineering: A.

[29]  Dongwon Shin,et al.  Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation , 2019, Materials Science and Engineering: A.

[30]  Eric T. Stromme,et al.  Anticipating impacts of introducing aluminum-cerium alloys into the United States automotive market , 2019, Resources, Conservation and Recycling.

[31]  D. Weiss Improved High-Temperature Aluminum Alloys Containing Cerium , 2019, Journal of Materials Engineering and Performance.

[32]  D. Seidman,et al.  Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys , 2019, Acta Materialia.

[33]  D. Dunand,et al.  Strengthening mechanisms in Al Ni Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates , 2019, Acta Materialia.

[34]  D. Dunand,et al.  Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy , 2018, Materialia.

[35]  A. Deschamps,et al.  Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening , 2018, Comptes Rendus Physique.

[36]  C. Leinenbach,et al.  Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy , 2018, Materials Characterization.

[37]  C. Kenel,et al.  Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting , 2018, Acta Materialia.

[38]  Q. Jia,et al.  Characterisation of AlScZr and AlErZr alloys processed by rapid laser melting , 2018, Scripta Materialia.

[39]  J. Allison,et al.  Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics , 2018, Metallurgical and Materials Transactions A.

[40]  J. S. Zuback,et al.  Additive manufacturing of metallic components – Process, structure and properties , 2018 .

[41]  Yan Chen,et al.  High performance aluminum–cerium alloys for high-temperature applications , 2017 .

[42]  L. Allard,et al.  Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties , 2017, Metallurgical and Materials Transactions A.

[43]  Ryan R. Dehoff,et al.  Evaluation of an Al-Ce alloy for laser additive manufacturing , 2017 .

[44]  D. Seidman,et al.  Role of silicon in the precipitation kinetics of dilute Al-Sc-Er-Zr alloys , 2016 .

[45]  F. Bonollo,et al.  The Effect of Transition Elements on High‐Temperature Mechanical Properties of Al–Si Foundry Alloys–A Review   , 2016 .

[46]  D. Seidman,et al.  Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys , 2014 .

[47]  P. Rometsch,et al.  Characterization of a laser-fabricated hypereutectic Al–Sc alloy bar , 2014 .

[48]  D. Seidman,et al.  Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er , 2014 .

[49]  A. M. Muggerud,et al.  Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures , 2013 .

[50]  D. Seidman,et al.  Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al-Zr-Sc-Si alloys , 2012 .

[51]  D. Seidman,et al.  Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging , 2010 .

[52]  L. Y. Zhang,et al.  Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy , 2008 .

[53]  B. Muddle,et al.  Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates , 2008 .

[54]  C. Sinclair,et al.  The Role of Excess Vacancies on Precipitation Kinetics in an Al-Mg-Sc Alloy , 2008 .

[55]  D. Seidman,et al.  Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures , 2003 .

[56]  D. Seidman,et al.  Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy , 2003 .

[57]  D. Seidman,et al.  Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [Acta Materialia 50(16), pp. 4021–4035] , 2003 .

[58]  O. Sherby,et al.  Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids , 2002 .

[59]  E. Nembach,et al.  On the additivity of solid solution and dispersion strengthening , 2001 .

[60]  Emmanuelle A. Marquis,et al.  Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys , 2001 .

[61]  A. Mortensen,et al.  Thermal mismatch dislocations produced by large particles in a strain-hardening matrix , 1991 .

[62]  R. Hyland,et al.  Determination of the elastic constants of polycrystalline Al3Sc , 1991 .

[63]  E. George,et al.  Brittle cleavage of L1_2 trialuminides , 1990 .

[64]  S. Allen Foil thickness measurements from convergent-beam diffraction patterns , 1981 .

[65]  E. F. Koch,et al.  The variation of interface dislocation networks with lattice mismatch in eutectic alloys , 1971 .

[66]  F. Czerwinski Cerium in aluminum alloys , 2019, Journal of Materials Science.

[67]  A. F. Fuentes,et al.  Cerium extraction by metallothermic reduction using cerium oxide powder injection , 2011 .

[68]  J. Hunt,et al.  Lamellar and Rod Eutectic Growth , 1988 .

[69]  A. Ardell,et al.  Precipitation hardening , 1985 .