A multi-horizon scale for volatility

We decompose volatility of a stock market index both in time and scale using wavelet filters and design a probabilistic indicator for valatilities, analogous to the Richter scale in geophysics. The peak-over-threshold method is used to fit the generalized Pareto probability distribution for the extreme values in the realized variances of wavelet coefficients. The indicator is computed for the daily Dow Jones Industrial Averages index data from 1986 to 2007 and for the intraday CAC 40 data from 1995 to 2006. The results are used for comparison and structural multi-resolution analysis of extreme events on the stock market and for the detection of financial crises.

[1]  J. B. Ramsey,et al.  The analysis of foreign exchange data using waveform dictionaries , 1997 .

[2]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[3]  Viviana Fernandez,et al.  Portfolio management under sudden changes in volatility and heterogeneous investment horizons , 2007 .

[4]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[5]  R. Gencay,et al.  An Introduction to Wavelets and Other Filtering Methods in Finance and Economics , 2001 .

[6]  Bertrand B. Maillet,et al.  The Impact of the 9/11 Events on the American and French Stock Markets , 2005 .

[7]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[8]  A. Subbotin Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons , 2009 .

[9]  M. Gilli,et al.  An Application of Extreme Value Theory for Measuring Financial Risk , 2006 .

[10]  A Stochastic Cascade Model for FX Dynamics , 2000, cond-mat/0004179.

[11]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[12]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[13]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[14]  Rama Cont,et al.  Comment on "Turbulent cascades in foreign exchange markets" , 1996, cond-mat/9607120.

[15]  Vito Latora,et al.  Power-law time distribution of large earthquakes. , 2003, Physical review letters.

[16]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[17]  Enrico Capobianco,et al.  Multiscale Analysis of Stock Index Return Volatility , 2004 .

[18]  R. Gencay,et al.  Scaling properties of foreign exchange volatility , 2001 .

[19]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Jianqing Fan,et al.  Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data , 2006 .

[21]  Bertrand Maillet,et al.  An index of market shocks based on multiscale analysis , 2003 .

[22]  F. Scholz Maximum Likelihood Estimation , 2006 .

[23]  M. Dacorogna,et al.  Modelling Short-Term Volatility with GARCH and Harch Models , 1997 .

[24]  Fulvio Corsi,et al.  A Simple Long Memory Model of Realized Volatility , 2004 .

[25]  D. Sornette,et al.  ”Direct” causal cascade in the stock market , 1998 .

[26]  Hahn-Shik Lee International transmission of stock market movements: a wavelet analysis , 2004 .

[27]  Thomas Lux,et al.  Long-term stochastic dependence in financial prices: evidence from the German stock market , 1996 .

[28]  Kim Christensen,et al.  Unified scaling law for earthquakes. , 2001, Physical review letters.