A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems

In this paper, a surrogate-assisted differential evolution (DE) algorithm is proposed to solve the computationally expensive optimization problems. In it, the Kriging model is used to approximate the objective function, while DE employs a mechanism to dynamically select the best performing combinations of parameters (amplification factor, crossover rate and population size). The performance of the algorithm is tested on the WCCI2014 competition on expensive single objective optimization problems. The experimental results demonstrate that the proposed algorithm has the ability to obtain good solutions.

[1]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[2]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[3]  Ruhul A. Sarker,et al.  Multi-operator based evolutionary algorithms for solving constrained optimization problems , 2011, Comput. Oper. Res..

[4]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[5]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[6]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[7]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[8]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[9]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[10]  A. Kai Qin,et al.  Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[11]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[12]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[14]  Stefan Janaqi,et al.  Generalization of the strategies in differential evolution , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[15]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[16]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[17]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[18]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[19]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[20]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[21]  Petros Koumoutsakos,et al.  Accelerating evolutionary algorithms with Gaussian process fitness function models , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[22]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[23]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[24]  Tapabrata Ray,et al.  Differential Evolution With Dynamic Parameters Selection for Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[25]  Jan K. Sykulski,et al.  Adaptive Weighted Expected Improvement With Rewards Approach in Kriging Assisted Electromagnetic Design , 2013, IEEE Transactions on Magnetics.

[26]  L. Lebensztajn,et al.  Kriging: a useful tool for electromagnetic device optimization , 2004, IEEE Transactions on Magnetics.

[27]  Johan A. K. Suykens,et al.  Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.