Function Spaces of Polyanalytic Functions

This article is meant as both an introduction and a review of some of the recent developments on Fock and Bergman spaces of polyanalytic functions. The study of polyanalytic functions is a classic topic in complex analysis. However, thanks to the interdisciplinary transference of knowledge promoted within the activities of HCAA network it has benefited from a cross-fertilization with ideas from signal analysis, quantum physics, and random matrices. We provide a brief introduction to those ideas and describe some of the results of the mentioned cross-fertilization. The departure point of our investigations is a thought experiment related to a classical problem of multiplexing of signals, in order words, how to send several signals simultaneously using a single channel.

[1]  R. Feynman An Operator calculus having applications in quantum electrodynamics , 1951 .

[2]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[3]  W. Roelcke Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I , 1966 .

[4]  W. Roelcke Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II , 1966 .

[5]  M. B. Balk,et al.  On polyanalytic functions , 1970 .

[6]  A. Perelomov On the completeness of a system of coherent states , 1971, math-ph/0210005.

[7]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[8]  H. Feichtinger On a new Segal algebra , 1981 .

[9]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[10]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[11]  S. Girvin,et al.  Formalism for the quantum Hall effect: Hilbert space of analytic functions , 1984 .

[12]  I. Daubechies,et al.  Quantum‐mechanical path integrals with Wiener measure for all polynomial Hamiltonians. II , 1985 .

[13]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[14]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[15]  H. Feichtinger,et al.  A unified approach to atomic decompositions via integrable group representations , 1988 .

[16]  W. Duke Hyperbolic distribution problems and half-integral weight Maass forms , 1988 .

[17]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[18]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[19]  A. Wunsche Displaced Fock states and their connection to quasiprobabilities , 1991 .

[20]  K. Seip Reproducing formulas and double orthogonality in Bargmann and Bergman spaces , 1991 .

[21]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.

[22]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[23]  K. Seip,et al.  Density theorems for sampling and interpolation in the Bargmann-Fock space II. , 1992 .

[24]  Yurii Lyubarskii Frames in the Bargmann space of entire functions , 1992 .

[25]  S. Thangavelu Lectures on Hermite and Laguerre expansions , 1993 .

[26]  A. Jaffe,et al.  “Theoretical mathematics”: toward a cultural synthesis of mathematics and theoretical physics , 1993, math/9307227.

[27]  K. Seip Beurling type density theorems in the unit disk , 1993 .

[28]  A. Ron,et al.  Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .

[29]  G. Folland Lectures on Hermite and Laguerre Expansions, Mathematical Notes, Vol. 24, S. Thangavelu, Princeton University Press, 1993, xv + 195 pp. , 1994 .

[30]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[31]  J. Ramanathan,et al.  Incompleteness of Sparse Coherent States , 1995 .

[32]  Zouhaïr Mouayn,et al.  Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants , 1997 .

[33]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[34]  H. Begehr,et al.  A Hierarchy of Integral Operators , 1997 .

[35]  N. Vasilevski On the structure of Bergman and poly-Bergman spaces , 1999 .

[36]  N. Vasilevski Poly-Fock Spaces , 2000 .

[37]  Kehe Zhu,et al.  The Bergman Spaces , 2000 .

[38]  Radu Balan Multiplexing of signals using superframes , 2000, SPIE Optics + Photonics.

[39]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[40]  H. Begehr Orthogonal decompositions of the function space L2( ;ℂ) , 2002 .

[41]  A. Ramazanov On the Structure of Spaces of Polyanalytic Functions , 2002 .

[42]  А. К. Рамазанов,et al.  О строении пространств полианалитических функций@@@On the Structure of Spaces of Polyanalytic Functions , 2002 .

[43]  Z. Mouayn Characterization of hyperbolic Landau states by coherent state transforms , 2003 .

[44]  H. Feichtinger Modulation Spaces on Locally Compact Abelian Groups , 2003 .

[45]  M. Shariati,et al.  Landau levels on the hyperbolic plane , 2004 .

[46]  Karlheinz Gr öchenig Localization of Frames , 2004 .

[47]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[48]  George A. Geri,et al.  Image representation using Hermite functions , 1994, Biological Cybernetics.

[49]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[50]  Uhr Simultaneous Estimates for Vector-valued Gabor Frames of Hermite Functions , 2006 .

[51]  Yurii Lyubarskii,et al.  Gabor frames with Hermite functions , 2007 .

[52]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[53]  Gitta Kutyniok,et al.  Affine Density in Wavelet Analysis , 2007, Lecture Notes in Mathematics.

[54]  A Paley–Wiener theorem for Bergman spaces with application to invariant subspaces , 2007 .

[55]  M. Engliš Toeplitz operators and localization operators , 2008 .

[56]  M. D. Gosson Spectral Properties of a Class of Generalized Landau Operators , 2008 .

[57]  G. Rozenblum,et al.  Commutative Algebras of Toeplitz Operators on the Bergman Space , 2008 .

[58]  Yurii Lyubarskii,et al.  Gabor (super)frames with Hermite functions , 2008, 0804.4613.

[59]  N. Makarov,et al.  Berezin transform in polynomial bergman spaces , 2008, 0807.0369.

[60]  Luís Daniel Abreu,et al.  Integral Equations and Operator Theory Super-Wavelets Versus Poly-Bergman Spaces , 2012 .

[61]  M. Agranovsky Characterization of polyanalytic functions by meromorphic extensions from chains of circles , 2009, 0910.3578.

[62]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[63]  Gerard Ascensi,et al.  Model Space Results for the Gabor and Wavelet Transforms , 2008, IEEE Transactions on Information Theory.

[64]  L. D. Abreu Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions , 2009, 0901.4386.

[65]  K. Gröchenig,et al.  Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group , 2010, 1012.4283.

[66]  K. Bringmann,et al.  Dyson’s ranks and Maass forms , 2010 .

[67]  M. D. Gosson,et al.  Spectral and regularity properties of a pseudo-differential calculus related to Landau quantization , 2010 .

[68]  O. Hutník,et al.  An alternative description of gabor spaces and gabor-toeplitz operators , 2010 .

[69]  O. Hutník A note on wavelet subspaces , 2010 .

[70]  L. D. Abreu On the structure of Gabor and super Gabor spaces , 2010 .

[71]  A. Bracken,et al.  The quantum state vector in phase space and Gabor's windowed Fourier transform , 2010, 1006.0370.

[72]  L. D. Abreu Wavelet frames with Laguerre functions , 2011 .

[73]  Yurii Lyubarskii,et al.  Gabor frames with rational density , 2011, ArXiv.

[74]  K. Grōchenig,et al.  Gabor Frames and Totally Positive Functions , 2011, 1104.4894.

[75]  Kehe Zhu Analysis on Fock Spaces , 2012 .

[76]  Landau levels on the hyperbolic plane in the presence of Aharonov–Bohm fields , 2012 .

[77]  J. Romero,et al.  Frames Adapted to a Phase-Space Cover , 2012, 1207.5383.

[78]  Toeplitz operators on Bergman spaces of polyanalytic functions , 2010, 1012.2816.

[79]  H. Hedenmalm,et al.  The Polyanalytic Ginibre Ensembles , 2011, 1106.2975.

[80]  Syed Twareque Ali,et al.  Coherent States, Wavelets, and Their Generalizations , 2013 .

[81]  H. Hedenmalm,et al.  Asymptotic expansion of polyanalytic Bergman kernels , 2013, 1303.0720.

[82]  H. Feichtinger,et al.  Coorbit Theory and Bergman Spaces , 2014 .

[83]  M. A. Hasankhani Fard Localization of Frames , 2015 .

[84]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .