A path forward for the translational development of aqueous zinc-ion batteries

[1]  L. Archer,et al.  Toward practical aqueous zinc-ion batteries for electrochemical energy storage , 2022, Joule.

[2]  Li Li,et al.  Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc‐Ion Batteries , 2022, Advanced materials.

[3]  F. La Mantia,et al.  Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries , 2022, Nature communications.

[4]  Dipan Kundu,et al.  Understanding and Performance of the Zn Anode Cycling in Aqueous Zn‐ion batteries and a Roadmap for the Future , 2022, Batteries & Supercaps.

[5]  Jiang Zhou,et al.  Electrolyte Strategies toward Better Zinc-Ion Batteries , 2021 .

[6]  C. Zhi,et al.  Dendrites in Zn‐Based Batteries , 2020, Advanced materials.

[7]  Jun Lu,et al.  Understanding the Gap between Academic Research and Industrial Requirements in Rechargeable Zinc‐Ion Batteries , 2020 .

[8]  Zhiqiang Niu,et al.  Materials chemistry for rechargeable zinc-ion batteries. , 2020, Chemical Society reviews.

[9]  Xueliang Sun,et al.  Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application , 2018, Electrochemical Energy Reviews.

[10]  Yitai Qian,et al.  Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery , 2017 .

[11]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[12]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[13]  Qinghua Zhang,et al.  Unlocking the energy capabilities of micron-sized LiFePO4 , 2015, Nature Communications.

[14]  Xiaobo Ji,et al.  First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 , 2014 .