Numerical Simulations in Solid‐State NMR with Simpson

We present a brief overview of the simulation software package SIMPSON, which is capable of virtually simulating any pulse sequence taking into account any nuclear spin interaction, variation in parameters for these, as well as experimental parameters like finite pulse effects and RF-field inhomogeneity. SIMPSON implements its user interface through the widely used scripting language, tool command language (Tcl), which offers a tremendous flexibility to easily perform complex operations as simulation of advanced pulse sequences, fitting of experimental data, and pulse sequence development using optimal control (OC). The broad range of applications of SIMPSON is demonstrated by some representative examples from the recent literature. Keywords: SIMPSON; SIMMOL; solid-state NMR; optimal control; numerical simulations

[1]  Navin Khaneja,et al.  Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. , 2009, Journal of magnetic resonance.

[2]  Bak,et al.  REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR , 1997, Journal of magnetic resonance.

[3]  N. Nielsen,et al.  QCPMG-MAS NMR of half-integer quadrupolar nuclei. , 1998, Journal of magnetic resonance.

[4]  L. Emsley,et al.  Correlation of fast and slow chemical shift spinning sideband patterns under fast magic-angle spinning. , 2003, Journal of magnetic resonance.

[5]  Marc Baldus,et al.  Radio-frequency driven polarization transfer without heteronuclear decoupling in rotating solids , 2004 .

[6]  Ayyalusamy Ramamoorthy,et al.  High-Resolution Heteronuclear Dipolar Solid-State NMR Spectroscopy , 1994 .

[7]  J Wang,et al.  Imaging membrane protein helical wheels. , 2000, Journal of magnetic resonance.

[8]  A. Lipton,et al.  Modeling the metal center of Cys4 zinc proteins. , 2007, Journal of the American Chemical Society.

[9]  A. Kentgens,et al.  Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems. , 2000, Journal of magnetic resonance.

[10]  A. Lipton,et al.  67ZN QCPMG SOLID-STATE NMR STUDIES OF ZINC COMPLEXES AS MODELS FOR METALLOPROTEINS , 1999 .

[11]  S. Opella,et al.  A solid-state NMR index of helical membrane protein structure and topology. , 2000, Journal of magnetic resonance.

[12]  M. Bak,et al.  Relative orientation of chemical shielding and dipolar coupling tensors: Mixed single- and double-quantum homonuclear rotary resonance nuclear magnetic resonance of rotating solids , 1997 .

[13]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[14]  W. Dixon,et al.  Spinning‐sideband‐free and spinning‐sideband‐only NMR spectra in spinning samples , 1982 .

[15]  N. Nielsen,et al.  High-field QCPMG-MAS NMR of half-integer quadrupolar nuclei with large quadrupole couplings , 1998 .

[16]  N. Nielsen,et al.  Helix conformations in 7TM membrane proteins determined using oriented-sample solid-state NMR with multiple residue-specific 15N labeling. , 2008, Biophysical journal.

[17]  M Bak,et al.  SIMPSON: a general simulation program for solid-state NMR spectroscopy. , 2000, Journal of magnetic resonance.

[18]  Optimal control based design of composite dipolar recoupling experiments by analogy to single-spin inversion pulses , 2007 .

[19]  Benjamin J. Wylie,et al.  Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[20]  Andreas Brinkmann,et al.  Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids , 2000 .

[21]  Low-power homonuclear dipolar recoupling in solid-state NMR developed using optimal control theory , 2005 .

[22]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[23]  J. Gesell,et al.  Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy , 1991, Journal of biomolecular NMR.

[24]  R. Tycko,et al.  Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems , 2003 .

[25]  N. Nielsen,et al.  Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence , 1995 .

[26]  A. Ramamoorthy,et al.  Broadband-PISEMA solid-state NMR spectroscopy , 2005 .

[27]  R. Griffin,et al.  Radio frequency-driven recoupling at high magic-angle spinning frequencies: homonuclear recoupling sans heteronuclear decoupling. , 2008, The Journal of chemical physics.

[28]  A. Lipton,et al.  Solid-state (67)zn NMR spectroscopy in bioinorganic chemistry. Spectra of four- and six-coordinate zinc pyrazolylborate complexes obtained by management of proton relaxation rates with a paramagnetic dopant. , 2002, Journal of the American Chemical Society.

[29]  I. Maximov,et al.  Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. , 2008, The Journal of chemical physics.

[30]  O. Antzutkin,et al.  Two-Dimensional Sideband Separation in Magic-Angle-Spinning NMR , 1995 .

[31]  N. Nielsen,et al.  Techniques and applications of NMR to membrane proteins (Review) , 2004 .

[32]  M. Hohwy,et al.  Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence , 1998 .

[33]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[34]  A. Malmendal,et al.  The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy , 2002 .

[35]  N. Nielsen,et al.  Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy. , 2005, Journal of structural biology.

[36]  Navin Khaneja,et al.  Effective Hamiltonians by optimal control: solid-state NMR double-quantum planar and isotropic dipolar recoupling. , 2006, The Journal of chemical physics.

[37]  B. Meier,et al.  Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach , 1994 .

[38]  D. Massiot,et al.  Multiple quantum magic-angle spinning using rotary resonance excitation , 2001 .

[39]  Thomas Vosegaard,et al.  Numerical Simulations in Biological Solid-State NMR Spectroscopy , 2004 .

[40]  M. Hansen,et al.  11B Chemical shift anisotropies in borates from 11B MAS, MQMAS, and single-crystal NMR spectroscopy , 2004 .

[41]  A. J. Mason,et al.  Separated local field NMR experiments on oriented samples rotating at the magic angle , 2007, Journal of biomolecular NMR.

[42]  Navin Khaneja,et al.  Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. , 2007, Journal of magnetic resonance.

[43]  Mikhail Veshtort,et al.  SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. , 2006, Journal of magnetic resonance.

[44]  A. Lesage,et al.  The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magic-angle-spinning nuclear magnetic resonance experiments , 2003 .

[45]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[46]  N. Nielsen,et al.  13C Chemical Shift and 13C–14N Dipolar Coupling Tensors Determined by 13C Rotary Resonance Solid-State NMR , 2001 .

[47]  N. Nielsen,et al.  Sensitivity-Enhanced Quadrupolar-Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors , 1997 .

[48]  A. Watts,et al.  Magic angle-oriented sample spinning (MAOSS): A new approach toward biomembrane studies. , 1998, Journal of magnetic resonance.

[49]  N. Nielsen,et al.  Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. , 2002, Journal of magnetic resonance.

[50]  T. T. Nakashima,et al.  Sensitivity enhancement of NMR spectra of half-integer spin quadrupolar nuclei in solids using hyperbolic secant pulses. , 2007, Journal of magnetic resonance.

[51]  Navin Khaneja,et al.  Improving solid-state NMR dipolar recoupling by optimal control. , 2004, Journal of the American Chemical Society.

[52]  N. Nielsen,et al.  Towards high-resolution solid-state NMR on large uniformly 15N- and [13C,15N]-labeled membrane proteins in oriented lipid bilayers , 2002, Journal of biomolecular NMR.

[53]  H. J. Jakobsen,et al.  Improved 67Zn Solid-State NMR from Single-Crystal Studies. Zn(CH3COO)2·2H2O , 1999 .

[54]  S. Vega,et al.  Triple quantum NMR on spin systems with I = 3/2 in solids , 1981 .

[55]  N. Khaneja,et al.  Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory. , 2005, Journal of the American Chemical Society.