The SLH framework for modeling quantum input-output networks

Abstract Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field. Graphical Abstract

[1]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[2]  Anna Maria Paganoni,et al.  Detection theory in quantum optics: stochastic representation , 1996 .

[3]  Derryck T. Reid,et al.  Pure down-conversion photons through sub-coherence-length domain engineering , 2017, 1704.03683.

[4]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[5]  Dmitri S. Pavlichin,et al.  Specification of photonic circuits using quantum hardware description language , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Gardiner,et al.  Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing. , 1986, Physical review letters.

[7]  T. M. Stace,et al.  Approximate method for treating dispersion in one-way quantum channels (5 pages) , 2006 .

[8]  S. Hagelin Analysis of Lossy Symmetrical Three-Port Networks with Circulator Properties , 1969 .

[9]  Robert L. Cook,et al.  Continuous Measurement and Stochastic Methods in Quantum Optical Systems , 2013, 1301.6193.

[10]  M. Yanagisawa,et al.  Linear quantum feedback networks , 2008 .

[11]  Joseph Kerckhoff,et al.  Tunable coupling to a mechanical oscillator circuit using a coherent feedback network , 2012, 1211.1950.

[12]  Naoki Yamamoto,et al.  Experimental Demonstration of Coherent Feedback Control on Optical Field Squeezing , 2011, IEEE Transactions on Automatic Control.

[13]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[14]  Cirac Interaction of a two-level atom with a cavity mode in the bad-cavity limit. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  J. Ignacio Cirac,et al.  Quantum dynamics of propagating photons with strong interactions: a generalized input–output formalism , 2015, 1501.04427.

[16]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[17]  Hendra Ishwara Nurdin Synthesis of linear quantum stochastic systems via quantum feedback networks , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[18]  L. Di'osi,et al.  Non-Markovian open quantum systems: Input-output fields, memory, and monitoring , 2011, 1108.3763.

[19]  Hideo Mabuchi,et al.  Scattering of polarized laser light by an atomic gas in free space: A quantum stochastic differential equation approach , 2007 .

[20]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[21]  Constantin Brif,et al.  Silicon nanophotonics for scalable quantum coherent feedback networks , 2016, EPJ Quantum Technology.

[22]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  Peter Zoller,et al.  Quantum Noise in Quantum Optics: the Stochastic Schrödinger Equation , 1997 .

[24]  Hendra Ishwara Nurdin,et al.  On the quasi-balanceable class of linear quantum stochastic systems , 2014, Syst. Control. Lett..

[25]  Dmitri S. Pavlichin,et al.  Design of nanophotonic circuits for autonomous subsystem quantum error correction , 2011, 1102.3143.

[26]  Andrew G. Glen,et al.  APPL , 2001 .

[27]  Guofeng Zhang,et al.  Generating nonclassical quantum input field states with modulating filters , 2014, EPJ Quantum Technology.

[28]  Joshua Combes,et al.  Passive CPHASE Gate via Cross-Kerr Nonlinearities. , 2016, Physical review letters.

[29]  S. E. Kocabas,et al.  Effects of modal dispersion on few-photon-qubit scattering in one-dimensional waveguides , 2016 .

[30]  Zach DeVito,et al.  Opt , 2017 .

[31]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[32]  Ramon van Handel,et al.  Approximation and limit theorems for quantum stochastic models with unbounded coefficients , 2007, 0712.2276.

[33]  A. Rauschenbeutel,et al.  Chiral quantum optics , 2017, ICTON.

[34]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[35]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[36]  Peter Zoller,et al.  Photonic Circuits with Time Delays and Quantum Feedback. , 2016, Physical review letters.

[37]  Ryan Hamerly,et al.  Advantages of coherent feedback for cooling quantum oscillators. , 2012, Physical review letters.

[38]  K. Jacobs Topics in Quantum Measurement and Quantum Noise , 1998, quant-ph/9810015.

[39]  J. E. Gough,et al.  Enhancement of field squeezing using coherent feedback , 2009, 0906.1933.

[40]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[41]  B. R. Mollow Pure-state analysis of resonant light scattering: Radiative damping, saturation, and multiphoton effects , 1975 .

[42]  A S Holevo QUANTUM AND CLASSICAL STOCHASTIC CALCULUS , 2003 .

[43]  Yang Yue,et al.  Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. , 2012, Optics express.

[44]  S. Olivares,et al.  Gaussian states in continuous variable quantum information , 2005, quant-ph/0503237.

[45]  Ryan T. Glasser,et al.  Optical logic gates using coherent feedback , 2012 .

[46]  Alberto Barchielli,et al.  Quantum stochastic differential equations: an application to the electron shelving effect , 1987 .

[47]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[48]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[49]  G. Wendin,et al.  Superconducting Quantum Circuits, Qubits and Computing , 2005 .

[50]  Gardiner,et al.  Effect of finite-bandwidth squeezing on inhibition of atomic-phase decays. , 1988, Physical review. A, General physics.

[51]  Gerard J. Milburn,et al.  Practical scheme for error control using feedback , 2004 .

[52]  Igor Volovich,et al.  Quantum Theory and Its Stochastic Limit , 2002 .

[53]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[54]  Felix Motzoi,et al.  Continuous joint measurement and entanglement of qubits in remote cavities , 2015, 1503.04766.

[55]  Hendra Ishwara Nurdin,et al.  Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states , 2012 .

[56]  John Gough,et al.  Non-Markovian quantum feedback networks I: Quantum transmission lines, lossless bounded real property and limit Markovian channels , 2016, 1604.02279.

[57]  P. D. Drummond,et al.  QUANTUM THEORY OF DISPERSIVE ELECTROMAGNETIC MODES , 1998 .

[58]  Hideo Mabuchi,et al.  Squeezed light in an optical parametric oscillator network with coherent feedback quantum control. , 2013, Optics express.

[59]  Franco Nori,et al.  Non-Markovian quantum input-output networks , 2012, 1208.4720.

[60]  Hideo Mabuchi Qubit limit of cavity nonlinear optics , 2012 .

[61]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[62]  Julio Gea-Banacloche,et al.  Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets , 2009, 0911.4682.

[63]  Collett,et al.  Second-harmonic generation inside a laser cavity with slowly decaying atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[64]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[65]  P. Zoller,et al.  Continuous mode cooling and phonon routers for phononic quantum networks , 2012, 1205.7008.

[66]  Luc Bouten,et al.  Adiabatic Elimination in Quantum Stochastic Models , 2007, 0707.0686.

[67]  Collett,et al.  Squeezing spectra for nonlinear optical systems. , 1985, Physical review. A, General physics.

[68]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[69]  Alberto Barchielli,et al.  A model for the macroscopic description and continual observations in quantum mechanics , 1982 .

[70]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[71]  Barry C. Sanders,et al.  Photon-Mediated Interactions Between Distant Artificial Atoms , 2013, Science.

[72]  J. Gough Quantum Stratonovich calculus and the quantum Wong-Zakai theorem , 2005, math-ph/0511046.

[73]  Zoller,et al.  Systems driven by colored squeezed noise: The atomic absorption spectrum. , 1988, Physical review. A, General physics.

[74]  H. Carmichael An open systems approach to quantum optics , 1993 .

[75]  M. R. James,et al.  Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.

[76]  A. S. Holevo Exponential formulae in quantum stochastic calculus , 1996 .

[77]  C. J. Hood,et al.  Squeezed excitation in cavity QED: Experiment and theory , 1998 .

[78]  Sophie Schirmer,et al.  Backaction driven, robust, steady-state long-distance qubit entanglement over lossy channels , 2015, 1512.03415.

[79]  Stephen M. Barnett,et al.  A quantum scattering theory approach to quantum-optical measurements , 1999 .

[80]  Florentin Reiter,et al.  Effective operator formalism for open quantum systems , 2011, 1112.2806.

[81]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[82]  Guofeng Zhang,et al.  Continuous-Mode MultiPhoton Filtering , 2016, SIAM J. Control. Optim..

[83]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[84]  Michael W. Jack,et al.  Continuous measurement and non-Markovian quantum trajectories , 2000 .

[85]  M. Sellars,et al.  Single photon production by rephased amplified spontaneous emission , 2013, 1311.4957.

[86]  Thomas Pellizzari,et al.  Photon-Wavepackets as Flying Quantum Bits , 1998 .

[87]  Franco Nori,et al.  Nonlinear quantum input-output analysis using Volterra series , 2014, 1407.8108.

[88]  Imamoglu Stochastic wave-function approach to non-Markovian systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[89]  S. M. Barnett,et al.  Theory of pseudomodes in quantum optical processes , 2001, quant-ph/0102142.

[90]  Matthew R. James,et al.  Quantum Dissipative Systems and Feedback Control Design by Interconnection , 2007, IEEE Transactions on Automatic Control.

[91]  Hideo Mabuchi,et al.  Nonlinear interferometry approach to photonic sequential logic , 2011, 1108.1594.

[92]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[93]  Hendra I. Nurdin,et al.  On structure-preserving transformations of the Itō generator matrix for model reduction of quantum feedback networks , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[94]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[95]  Reid,et al.  Laser bandwidth effects on squeezing in intracavity parametric oscillation. , 1988, Physical review. A, General physics.

[96]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[97]  J. Majer SUPERCONDUCTING QUANTUM CIRCUITS , 2019, Mesoscopic Physics meets Quantum Engineering.

[98]  W. Bowen Quantum Optomechanics , 2015, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[99]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[100]  Joseph Kerckhoff,et al.  Superconducting microwave multivibrator produced by coherent feedback. , 2012, Physical review letters.

[101]  David Applebaum,et al.  Fermion Ito's formula and stochastic evolutions , 1984 .

[102]  Matthew R. James,et al.  Cross-phase modulation and entanglement in a compound gradient echo memory , 2016 .

[103]  L. Ranzani,et al.  Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. , 2016, Physical review applied.

[104]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[105]  Hendra Ishwara Nurdin,et al.  Quantum trajectories for a class of continuous matrix product input states , 2014, ArXiv.

[106]  Naoki Yamamoto,et al.  Coherent versus measurement feedback: Linear systems theory for quantum information , 2014, 1406.6466.

[107]  E. Wong,et al.  ON THE RELATION BETWEEN ORDINARY AND STOCHASTIC DIFFERENTIAL EQUATIONS , 1965 .

[108]  Matthew R. James,et al.  Analysis of the operation of gradient echo memories using a quantum input–output model , 2013 .

[109]  Graham,et al.  Linear stochastic wave equations for continuously measured quantum systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[110]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[111]  A. Brańczyk,et al.  N-photon wave packets interacting with an arbitrary quantum system , 2012, 1202.3430.

[112]  H. J. Carmichael,et al.  Open quantum systems with delayed coherent feedback , 2017, 1702.05776.

[113]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[114]  Gardiner,et al.  Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[115]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[116]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[117]  Andreas Knorr,et al.  Time-delayed quantum coherent Pyragas feedback control of photon squeezing in a degenerate parametric oscillator , 2016, 1603.07137.

[118]  P. Zoller,et al.  Laser-driven atoms in half-cavities , 2002 .

[119]  L Martin-Moreno,et al.  Scattering in the ultrastrong regime: nonlinear optics with one photon. , 2014, Physical review letters.

[120]  David P. DiVincenzo,et al.  Multiport Impedance Quantization , 2015, 1505.04116.

[121]  Robin L. Hudson,et al.  Unification of fermion and Boson stochastic calculus , 1986 .

[122]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[123]  Hideo Mabuchi,et al.  Trapped modes in linear quantum stochastic networks with delays , 2015 .

[124]  Leonardo Ranzani,et al.  Graph-based analysis of nonreciprocity in coupled-mode systems , 2014, 1406.4922.

[125]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[126]  Alberto Barchielli,et al.  Measurement theory and stochastic differential equations in quantum mechanics. , 1986, Physical review. A, General physics.

[127]  Barnett,et al.  Quantization of the electromagnetic field in dielectrics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[128]  Thomas M. Stace,et al.  Nonabsorbing high-efficiency counter for itinerant microwave photons , 2014, 1403.4465.

[129]  A. S. Kholevo Quantum stochastic calculus , 1991 .

[130]  John E Gough,et al.  Principles and applications of quantum control engineering , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[131]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[132]  Y. Ayasli,et al.  Analysis of Wide-Band Stripline Circulators by Integral Equation Technique , 1980 .

[133]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[134]  Hideo Mabuchi,et al.  Cavity-QED models of switches for attojoule-scale nanophotonic logic , 2009, 0907.2720.

[135]  Jianshu Cao,et al.  Non-Markovian dynamical maps: numerical processing of open quantum trajectories. , 2013, Physical review letters.

[136]  Daoyi Dong,et al.  Exact analysis of the response of quantum systems to two-photons using a QSDE approach , 2015, 1509.06934.

[137]  Martin V. Gustafsson,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[138]  Shanhui Fan,et al.  Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit , 2010, 1011.3296.

[139]  N. Tezak,et al.  Low dimensional manifolds for exact representation of open quantum systems , 2017, 1704.05369.

[140]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[141]  I. Siddiqi,et al.  Suppression of the radiative decay of atomic coherence in squeezed vacuum , 2013, 1301.6276.

[142]  Barry C. Sanders,et al.  Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms , 2013, 1305.7135.

[143]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[144]  P. Warszawski,et al.  Adiabatic elimination in compound quantum systems with feedback , 2000 .

[145]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[146]  A. Grimsmo,et al.  Time-Delayed Quantum Feedback Control. , 2015, Physical review letters.

[147]  Raffaello Girlanda,et al.  Stochastic wavefunction methods beyond the Born - Markov and rotating-wave approximations , 2016 .

[148]  E. Kessler,et al.  Generalized Schrieffer-Wolff formalism for dissipative systems , 2012, 1205.5440.

[149]  Yang Yue,et al.  Flat and low dispersion in highly nonlinear slot waveguides. , 2010, Optics express.

[150]  C. W. Gardiner,et al.  Adiabatic elimination in stochastic systems. II. Application to reaction diffusion and hydrodynamic-like systems , 1984 .

[151]  Scott Parkins,et al.  Enhanced optical squeezing from a degenerate parametric amplifier via time-delayed coherent feedback , 2016 .

[152]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[153]  Ben Q. Baragiola,et al.  Quantum trajectories for propagating Fock states , 2017, 1704.00101.

[154]  G. Milburn,et al.  An introduction to quantum optomechanics , 2011 .

[155]  J. Piilo,et al.  Pseudomodes as an effective description of memory: Non-Markovian dynamics of two-state systems in st , 2008, 0810.1361.

[156]  Hendra Ishwara Nurdin,et al.  On Synthesis of Linear Quantum Stochastic Systems by Pure Cascading , 2010, IEEE Transactions on Automatic Control.

[157]  H. J. Kimble,et al.  Atom–atom interactions around the band edge of a photonic crystal waveguide , 2016, Proceedings of the National Academy of Sciences.

[158]  Masahiro Yanagisawa,et al.  Time-delayed quantum feedback for traveling optical fields , 2010 .

[159]  Guofeng Zhang,et al.  On realization theory of quantum linear systems , 2013, Autom..

[160]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[161]  C. W. Gardiner,et al.  Adiabatic elimination in stochastic systems. III. Application to renormalization-group transformations of the time-dependent Ginsburg-Landau model , 1984 .

[162]  Nissim Ofek,et al.  Comparing and combining measurement-based and driven-dissipative entanglement stabilization , 2015, 1509.00860.

[163]  Michel Devoret,et al.  Quantum Machines: Measurement and Control of Engineered Quantum Systems: Lecture Notes of the Les Houches Summer School: Volume 96, July 2011 , 2014 .

[164]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[165]  Matthew R. James,et al.  Quantum feedback networks and control: A brief survey , 2012, 1201.6020.

[166]  Hideo Mabuchi,et al.  Physical model of continuous two-qubit parity measurement in a cavity-QED network , 2008, 0812.1246.

[167]  Ryan Hamerly,et al.  Quantum noise of free-carrier dispersion in semiconductor optical cavities , 2015, 1504.04409.

[168]  S. Fan,et al.  Resonance fluorescence in a waveguide geometry , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[169]  Michal Lipson,et al.  On-Chip Optical Squeezing , 2013, 1309.6371.

[170]  Daniel J. Brod,et al.  Two photons co- and counterpropagating through N cross-Kerr sites , 2016, 1604.03914.

[171]  Gerard J. Milburn,et al.  Quantum Measurement and Stochastic Processes in Mesoscopic Conductors , 2000 .

[172]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[173]  Ian R. Petersen,et al.  The transfer function of generic linear quantum stochastic systems has a pure cascade realization , 2015, Autom..

[174]  Lloyd Christopher L. Hollenberg,et al.  Surface code continuous quantum error correction using feedback , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[175]  Ofer Firstenberg,et al.  Colloquium: Strongly interacting photons in one-dimensional continuum , 2016, 1603.06590.

[176]  G J Milburn,et al.  Mesoscopic one-way channels for quantum state transfer via the quantum Hall effect. , 2004, Physical review letters.

[177]  Hendra Ishwara Nurdin,et al.  Quantum filtering for systems driven by fields in single photon states and superposition of coherent states using non-Markovian embeddings , 2011, Quantum Information Processing.

[178]  Anton Frisk Kockum,et al.  Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom , 2014, 1406.0350.

[179]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[180]  Ben Q. Baragiola,et al.  Open Systems Dynamics for Propagating Quantum Fields , 2014, 1408.4447.

[181]  Reid,et al.  Quantum theory of nondegenerate four-wave mixing. , 1986, Physical review. A, General physics.

[182]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[183]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[184]  Matthew R. James,et al.  The Series Product for Gaussian Quantum Input Processes , 2016, 1602.01991.

[185]  Alexandre Blais,et al.  On-chip superconducting microwave circulator from synthetic rotation , 2015, 1502.06041.

[186]  R. Glauber,et al.  Quantum optics of dielectric media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[187]  Zoller,et al.  Atomic transitions in finite-bandwidth squeezed light. , 1988, Physical review letters.

[188]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[189]  D. E. Chang,et al.  Atom-light interactions in quasi-one-dimensional nanostructures: A Green's-function perspective , 2016, 1606.04977.

[190]  M. James,et al.  Stability, gain, and robustness in quantum feedback networks (13 pages) , 2005, quant-ph/0511140.

[191]  C. W. Gardiner Input and output in damped quantum systems III: formulation of damped systems driven by Fermion fields , 2004 .

[192]  Ian R. Petersen,et al.  Quantum Linear Systems Theory , 2016, ArXiv.

[193]  Gardiner,et al.  Driving atoms with light of arbitrary statistics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[194]  H. M. Wiseman Quantum trajectories and quantum measurement theory , 1996 .

[195]  Collett,et al.  Two-photon-loss model of intracavity second-harmonic generation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[196]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[197]  Hendra Ishwara Nurdin,et al.  Coherent feedback enabled distributed generation of entanglement between propagating Gaussian fields , 2015, Quantum Inf. Process..

[198]  J. Ignacio Cirac,et al.  Multiphoton-scattering theory and generalized master equations , 2015, 1507.08699.

[199]  B. M. Fulk MATH , 1992 .

[200]  Shanhui Fan,et al.  Input-output formalism for few-photon transport: A systematic treatment beyond two photons , 2015, 1502.06049.

[201]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[202]  D. F. Walls,et al.  NON-MARKOVIAN QUANTUM TRAJECTORIES FOR SPECTRAL DETECTION , 1999 .

[203]  Hendra Ishwara Nurdin,et al.  Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach , 2016, ArXiv.

[204]  Drummond,et al.  Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[205]  David P. DiVincenzo,et al.  Multilevel quantum description of decoherence in superconducting qubits , 2004 .

[206]  C. Gardiner Adiabatic elimination in stochastic systems. I: Formulation of methods and application to few-variable systems , 1984 .

[207]  Peter D. Drummond,et al.  The Quantum Theory of Nonlinear Optics , 2014 .

[208]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[209]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[210]  Naoki Yamamoto,et al.  System Identification for Passive Linear Quantum Systems , 2013, IEEE Transactions on Automatic Control.

[211]  J. Gough Feedback network models for quantum transport. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[212]  M. Gu,et al.  Unconditional preparation of entanglement between atoms in cascaded optical cavities. , 2003, Physical review letters.

[213]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[214]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[215]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[216]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[217]  D. D. Crouch,et al.  Quantum wideband traveling-wave analysis of a degenerate parametric amplifier , 1987 .

[219]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[220]  Howard Mark Wiseman,et al.  Quantum trajectories and feedback , 1994 .

[221]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[222]  Ryan Hamerly,et al.  Quantum noise in large-scale coherent nonlinear photonic circuits , 2014 .

[223]  Schumaker,et al.  New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.

[224]  Francesco Ciccarello,et al.  Atom-field dressed states in slow-light waveguide QED , 2015, 1512.04946.

[225]  Ian R. Petersen,et al.  Feedback Tracking Control of Non-Markovian Quantum Systems , 2017, IEEE Transactions on Control Systems Technology.

[226]  Hendra Ishwara Nurdin,et al.  Structures and Transformations for Model Reduction of Linear Quantum Stochastic Systems , 2013, IEEE Transactions on Automatic Control.

[227]  Shan Ma,et al.  Linear quantum systems with diagonal passive Hamiltonian and a single dissipative channel , 2015, Syst. Control. Lett..

[228]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[229]  John K. Stockton,et al.  REVIEW ARTICLE: Modelling and feedback control design for quantum state preparation , 2005 .

[230]  Hideo Mabuchi,et al.  Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability , 2011, 1101.3461.

[231]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[232]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[233]  Hendra I. Nurdin,et al.  Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks , 2010, 1011.2027.

[234]  J. Sipe,et al.  Asymptotic fields for a Hamiltonian treatment of nonlinear electromagnetic phenomena , 2012 .

[235]  H M Wiseman,et al.  Quantum optical waveform conversion. , 2010, Physical review letters.

[236]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.