Calculation of Auger rates in a quantum well structure and its application to InGaAsP quantum well lasers

We discuss the possible intrinsic limitation on the temperature dependence of threshold current of long wavelength InGaAsP quantum well lasers caused by Auger recombination and intervalence band absorption. A model calculation of the various band‐to‐band Auger rates are presented. We find that the Auger rates increase with decreasing band gap and also with increasing temperature as in the case of bulk semiconductors. The temperature dependence and the band‐gap dependence arises from the energy and momentum conservation (in the direction normal to the well) that the four particle states involved must satisfy. The estimated Auger coefficient is large enough to be important in single quantum well lasers. However, the Auger effect should be much smaller in a multiquantum well laser than for a single quantum well laser. This is because the carrier density at threshold is smaller (by a factor of 3 to 4) for multiquantum well lasers than for single quantum well lasers. The increased intervalence band absorption ...

[1]  H. Casey,et al.  Heterostructure lasers , 1978 .

[2]  P. D. Dapkus,et al.  Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition , 1978 .

[3]  J. Shah,et al.  Hot‐carrier effects in 1.3‐μ In1−xGaxAsyP1−y light emitting diodes , 1981 .

[4]  W. Joyce,et al.  Analytic approximations for the Fermi energy of an ideal Fermi gas , 1977 .

[5]  Russell D. Dupuis,et al.  Quantum-well heterostructure lasers , 1980 .

[6]  R. F. Leheny,et al.  Dynamics of Photoexcited GaAs Band-Edge Absorption with Subpicosecond Resolution , 1979 .

[7]  N. Dutta,et al.  Light saturation of InGaAsP-InP LED's , 1982 .

[8]  Niloy K. Dutta,et al.  Calculated threshold current of GaAs quantum well lasers , 1982 .

[9]  Karl Hess,et al.  Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .

[10]  Niloy K. Dutta,et al.  Temperature dependence of threshold current of GaAs quantum well lasers , 1982 .

[11]  R. Dingle,et al.  Confined carrier quantum states in ultrathin semiconductor heterostructures , 1975 .

[12]  A. Sugimura,et al.  Band-to-band Auger recombination effect on InGaAsP laser threshold , 1981 .

[13]  D. Scifres,et al.  Optical analysis of multiple-quantum-well lasers. , 1979, Applied optics.

[14]  W. Tsang,et al.  A visible (AlGa)As heterostructure laser grown by molecular beam epitaxy , 1981 .

[15]  Niloy K. Dutta,et al.  The case for Auger recombination in In1−xGaxAsyP1−y , 1982 .

[16]  Nick Holonyak,et al.  Temperature dependence of threshold current for coupled multiple quantum‐well In1−xGax P1−zAsz‐InP heterostructure laser diodes , 1980 .

[17]  Karl Hess,et al.  Temperature dependence of threshold current for quantum‐well AlxGa1−xAs‐GaAs heterostructure laser diodes , 1980 .

[18]  H. Imai,et al.  Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers , 1981 .

[19]  M. Takeshima Auger recombination in InAs, GaSb, InP, and GaAs , 1972 .

[20]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As modified multiquantum well heterostructure lasers grown by molecular‐beam epitaxy , 1981 .

[21]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[22]  P. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Y. Horikoshi,et al.  Temperature Sensitive Threshold Current of InGaAsP–InP Double Heterostructure Lasers , 1979 .

[24]  A. Beattie,et al.  Recombination in Semiconductors by a Light Hole Auger Transition , 1967 .

[25]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .

[26]  C. Burrus,et al.  Radiance of small-area high-current-density electroluminescent diodes , 1972 .

[27]  N. Dutta,et al.  Temperature dependence of the lasing characteristics of the 1.3 µm InGaAsP-InP and GaAs-Al 0.36 Ga 0.64 As DH lasers , 1982 .