Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data

[1]  J. Mazurié,et al.  A single bio-energetics growth and reproduction model for the oyster Crassostrea gigas in six Atlantic ecosystems , 2011 .

[2]  S. Pouvreau,et al.  Effect of phytoplankton and temperature on the reproduction of the Pacific oyster Crassostrea gigas: Investigation through DEB theory , 2011 .

[3]  Ø. Strand,et al.  Modelling growth variability in longline mussel farms as a function of stocking density and farm design , 2011 .

[4]  J. Nunes,et al.  Towards an ecosystem approach to aquaculture: Assessment of sustainable shellfish cultivation at different scales of space, time and complexity , 2011 .

[5]  Michael Kearney,et al.  Modelling the ecological niche from functional traits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  Suzanne Roy,et al.  Integrating multiple spatial scales in the carrying capacity assessment of a coastal ecosystem for bivalve aquaculture , 2010 .

[7]  C. Bacher,et al.  Modelling the spatial heterogeneity of ecological processes in an intertidal estuarine bay: dynamic interactions between bivalves and phytoplankton , 2010 .

[8]  M. Blanchard,et al.  Assessing the role of benthic filter feeders on phytoplankton production in a shellfish farming site: Mont Saint Michel Bay, France , 2010 .

[9]  P. Tréguer,et al.  Climate-driven changes in coastal marine systems of western Europe , 2010 .

[10]  S. Michel,et al.  Evolution of upper layer temperature in the Bay of Biscay during the last 40 years , 2009 .

[11]  Ø. Strand,et al.  Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions , 2009 .

[12]  S. Kooijman,et al.  Modelling growth and reproduction of the Pacific oyster Crassostrea gigas: advances in the oyster-DEB model through application to a coastal pond. , 2009 .

[13]  J. Ren Effect of food quality on energy uptake , 2009 .

[14]  C. Bacher,et al.  Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment; The Baie des Veys (France) , 2009 .

[15]  P. Claquin,et al.  Short-term variability of the phytoplankton community in coastal ecosystem in response to physical and chemical conditions' changes , 2008 .

[16]  S. Saitoh,et al.  GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan , 2008 .

[17]  Bertrand Saulquin,et al.  Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations , 2008 .

[18]  Carrie V. Kappel,et al.  A Global Map of Human Impact on Marine Ecosystems , 2008, Science.

[19]  P. Riera Trophic subsidies of Crassostrea gigas, Mytilus edulis and Crepidula fornicata in the Bay of Mont Saint Michel (France): A δ13C and δ15N investigation , 2007 .

[20]  V. Garçon,et al.  Use of SeaWiFS data for light availability and parameter estimation of a phytoplankton production model of the Bay of Biscay , 2007 .

[21]  William Silvert,et al.  Review of recent carrying capacity models for bivalve culture and recommendations for research and management , 2006 .

[22]  J. Meer,et al.  The estimation of DEB parameters for various Northeast Atlantic bivalve species , 2006 .

[23]  Cédric Bacher,et al.  Use of dynamic energy budget and individual based models to simulate the dynamics of cultivated oyster populations , 2006 .

[24]  Aline Gangnery,et al.  Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions , 2006 .

[25]  C. Bacher,et al.  Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis , applied to environmental monitoring , 2006 .

[26]  J. Witte,et al.  Intra- and interspecies comparison of energy flow in bivalve species in Dutch coastal waters by means of the Dynamic Energy Budget (DEB) theory , 2006 .

[27]  J. V. D. Meer,et al.  An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation , 2006 .

[28]  Sebastiaan A.L.M. Kooijman,et al.  Pseudo-faeces production in bivalves , 2006 .

[29]  D. A. Gagliardini,et al.  Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf , 2006 .

[30]  J. Ren,et al.  Environmental influence on mussel growth: A dynamic energy budget model and its application to the greenshell , 2005 .

[31]  Bas Kooijman,et al.  Dynamic Energy Budget Theory for Metabolic Organisation , 2005 .

[32]  J. Grant,et al.  Bay-scale spatial growth variation of mussels Mytilus edulis in suspended culture, Prince Edward Island, Canada , 2005 .

[33]  Michael Dowd,et al.  A bio-physical coastal ecosystem model for assessing environmental effects of marine bivalve aquaculture , 2005 .

[34]  H. Kaufmann,et al.  Variation in Lake Baikal's phytoplankton distribution and fluvial input assessed by SeaWiFS satellite data , 2005 .

[35]  M. Gibbs,et al.  Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model , 2005 .

[36]  G. Sarà,et al.  The carrying capacity for Mediterranean bivalve suspension feeders: evidence from analysis of food availability and hydrodynamics and their integration into a local model , 2004 .

[37]  Jon Grant,et al.  Mathematical modelling to assess the carrying capacity for multi-species culture within coastal waters , 2003 .

[38]  F. Gohin,et al.  Satellite and in situ observations of a late winter phytoplankton bloom, in the northern Bay of Biscay , 2003 .

[39]  Lindsay G. Ross,et al.  A comparison of development opportunities for crab and shrimp aquaculture in southwestern Bangladesh, using GIS modelling , 2003 .

[40]  É. Nézan,et al.  Variability patterns of microphytoplankton communities along the French coasts , 2002 .

[41]  R. Willows,et al.  Potential applications of mussel modelling , 2002, Helgoland Marine Research.

[42]  F. Gohin,et al.  A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters , 2002 .

[43]  E. Bourget,et al.  Shell allometry and length-mass-density relationship for Mytilus edulis in an experimental food-regulated situation , 2001 .

[44]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[45]  H. Scholten,et al.  Responses of Mytilus edulis L. to varying food concentrations: testing EMMY, an ecophysiological model , 1998 .

[46]  J. Grant,et al.  Comparative models of mussel bioenergetics and their validation at field culture sites , 1998 .

[47]  James E. Cloern,et al.  An empirical model of the phytoplankton chlorophyll : carbon ratio‐the conversion factor between productivity and growth rate , 1995 .

[48]  Sebastiaan A.L.M. Kooijman,et al.  Application of a dynamic energy budget model to Mytilus edulis (L.) , 1993 .

[49]  D. Razet,et al.  Modèle énergétique uniboite de la croissance des hUÎtres (Crassostrea gigas) dans le bassin de Marennes-Oléron , 1991 .

[50]  Sebastiaan A.L.M. Kooijman,et al.  Energy budgets can explain body size relations , 1986 .

[51]  R. Pridmore,et al.  Chlorophyll a as an indicator of phytoplankton cell volume in 12 lakes, North Island, New Zealand , 1984 .

[52]  R. Seed Factors Influencing Shell Shape in the Mussel Mytilus Edulis , 1968, Journal of the Marine Biological Association of the United Kingdom.

[53]  Bertrand Saulquin,et al.  Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll- a Data From 1998 to 2008 on the European Atlantic Shelf , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Guy Fontenelle,et al.  Impact des facteurs environnementaux et des pratiques conchylicoles sur la baie du Mont Saint-Michel et la production conchylicole. Etude de scenarii par modélisation. Programme Liteau 3. Rapport Final , 2010 .

[55]  S. Pouvreaua,et al.  A Dynamic Energy Budget ( DEB ) growth model for Pacific oyster larvae , Crassostrea gigas , 2010 .

[56]  D. Soto,et al.  The potential of spatial planning tools to support the ecosystem approach to aquaculture. FAO/Rome Expert Workshop, Rome, Italy, 19-21 November, 2008. , 2010 .

[57]  J. Kapetsky,et al.  Geographic information systems, remote sensing and mapping for the development and management of marine aquaculture , 2010 .

[58]  B. Bayne,et al.  Marine mussels : their ecology and physiology , 2009 .

[59]  F. Douvere,et al.  New perspectives on sea use management: initial findings from European experience with marine spatial planning. , 2009, Journal of environmental management.

[60]  Hoepffner Nicolas,et al.  Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology , 2008 .

[61]  W. Gregg Reports of the International Ocean-Colour Coordinating Group , 2007 .

[62]  J. Grant,et al.  Modelling the effect of food depletion on scallop growth in Sungo Bay (China) , 2003 .

[63]  Anne-Laure Barillé-Boyer,et al.  Modélisation de l'écophysiologie de l'huître Crassostrea gigas dans un environnement estuarien , 1997 .

[64]  D. Schneider A bioenergetics model of zebra mussel, Dreissena polymorpha, growth in the Great Lakes , 1992 .

[65]  R. Nisbet,et al.  Dynamic Models of Growth and Reproduction of the Mussel Mytilus edulis L. , 1990 .

[66]  Pierre Lubey Recherches sur le cycle sexuel et l'émission des gamètes chez les mytilides et les pectinides (Mollusques bivalves) , 1959 .