Multivariate generalized information entropy of financial time series

Abstract In order to explore the complexity of multivariate time series, we propose a novel method: multiscale multivariate weighted fractional entropy (MMWFE). The research results show that MMWFE is able to measure the complexity of multivariate data correctly and reflect more information contained in the time series. In this paper, the reliability of the proposed method is supported by simulations on generated and empirical data. We analyze simulated pink noise and white noise to test the validity of this method, and the result is consistent with the fact that pink noise is more complex than white noise. Meanwhile, MMWFE shows a better robustness. MMWFE is then employed to bivariate stock return and volume to explore the complexity of stock markets. It successfully distinguishes Asia, Europe and Americas markets. Finally, dynamic MMWFE is applied to explore the evolution of complexity for mining more information containing in nonlinear time series.

[1]  Danilo P Mandic,et al.  Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Gaoxiang Ouyang,et al.  Characterization of the causality between spike trains with permutation conditional mutual information. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[5]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[6]  Badong Chen,et al.  Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Pengjian Shang,et al.  Transfer entropy between multivariate time series , 2017, Commun. Nonlinear Sci. Numer. Simul..

[8]  Chun-Chieh Wang,et al.  Time Series Analysis Using Composite Multiscale Entropy , 2013, Entropy.

[9]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[10]  Pengjian Shang,et al.  Refined composite multiscale weighted-permutation entropy of financial time series , 2018 .

[11]  G. Weiss TIME-REVERSIBILITY OF LINEAR STOCHASTIC PROCESSES , 1975 .

[12]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[13]  Jifei Hao,et al.  Fractal Random Walk and Classification of ECG Signal , 2008 .

[14]  Pengjian Shang,et al.  Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series , 2016, Commun. Nonlinear Sci. Numer. Simul..

[15]  Hui Xiong,et al.  Multiscale Analysis of Time Irreversibility Based on Phase-Space Reconstruction and Horizontal Visibility Graph Approach , 2018 .

[16]  Jan Khre,et al.  The Mathematical Theory of Information , 2012 .

[17]  Yali Zhang,et al.  Permutation entropy analysis of financial time series based on Hill's diversity number , 2017, Commun. Nonlinear Sci. Numer. Simul..

[18]  Luciano Zunino,et al.  Forbidden patterns, permutation entropy and stock market inefficiency , 2009 .

[19]  M. Matilla-García,et al.  A permutation entropy based test for causality: The volume–stock price relation , 2014 .

[20]  Yi Yin,et al.  Weighted multiscale permutation entropy of financial time series , 2014 .

[21]  G. Ouyang,et al.  Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.

[22]  José António Tenreiro Machado,et al.  Fractional Order Generalized Information , 2014, Entropy.

[23]  M. Ubriaco,et al.  Entropies based on fractional calculus , 2009, 0902.2726.

[24]  Yi Yin,et al.  Multivariate multiscale sample entropy of traffic time series , 2016, Nonlinear Dynamics.

[25]  Pengjian Shang,et al.  Modeling traffic flow correlation using DFA and DCCA , 2010 .

[26]  J. A. Tenreiro Machado,et al.  Approximating fractional derivatives through the generalized mean , 2009 .

[27]  Alberto Porta,et al.  Multiple testing strategy for the detection of temporal irreversibility in stationary time series. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  C. Peng,et al.  Analysis of complex time series using refined composite multiscale entropy , 2014 .

[29]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[30]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  J. Sleigh,et al.  Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. , 2008, British journal of anaesthesia.

[32]  J. A. Tenreiro Machado,et al.  Fractional coins and fractional derivatives , 2013 .

[33]  Madalena Costa,et al.  Multiscale entropy analysis of complex physiologic time series. , 2002, Physical review letters.

[34]  A. M. Mathai,et al.  Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy , 2006, cond-mat/0607605.

[35]  Testing time reversibility without moment restrictions , 2000 .

[36]  J. A. Tenreiro Machado,et al.  Entropy Analysis of Integer and Fractional Dynamical Systems , 2010 .

[37]  Yi-Cheng Zhang Complexity and 1/f noise. A phase space approach , 1991 .

[38]  José António Tenreiro Machado,et al.  Fractional Order Calculus: Basic Concepts and Engineering Applications , 2010 .

[39]  H. Fogedby On the phase space approach to complexity , 1992 .

[40]  Christian Beck,et al.  Generalised information and entropy measures in physics , 2009, 0902.1235.

[41]  Pengjian Shang,et al.  Classifying of financial time series based on multiscale entropy and multiscale time irreversibility , 2014 .

[42]  M. Rivero,et al.  Fractional calculus: A survey of useful formulas , 2013, The European Physical Journal Special Topics.

[43]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[44]  Pengjian Shang,et al.  Generalized permutation entropy analysis based on the two-index entropic form Sq,δ. , 2015, Chaos.