An approach for grounding ontologies in raw data using foundational ontology

Many information systems employ domain ontologies to make explicit the semantic of the descriptions manipulated by them. However, the relation between the system and the real world is always mediated by the user: the representations within the system do not keep any direct connection to the real world, besides those inside the user' mind. This scenario describes the so called symbol grounding problem in information systems, which refers to the general issue of connecting symbols in a symbol system to their analog manifestations in the real world. Symbol grounding strategies keep the relation between the external world and symbols within the system, providing improved support for description and procedures for automatic interpretation. In this paper, we present a grounding framework which incorporates notions of formal ontology in its core. The ontological characterization of the visual grounding relations should provide better criteria for deciding which domain entities can be grounded and how they can be grounded. Finally, we demonstrate the application of these ideas in an interpretation system in the Geology domain.

[1]  Michael G. Strintzis,et al.  Ontology-Driven Semantic Video Analysis Using Visual Information Objects , 2007, SAMT.

[2]  Alessandro Saffiotti,et al.  Anchoring Symbols to Sensor Data: Preliminary Report , 2000, AAAI/IAAI.

[3]  Joel Luis Carbonera,et al.  Reasoning Over Visual Knowledge , 2011, ONTOBRAS-MOST.

[4]  John K. Debenham Knowledge Engineering , 1998, Encyclopedia of Social Network Analysis and Mining.

[5]  Ingvar Johansson,et al.  Functions and Shapes in the Light of the International System of Units , 2008 .

[6]  J. Wagoner,et al.  Siliciclastic sequence stratigraphy in well logs, cores, and outcrops , 1990 .

[7]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[8]  Nicola Guarino,et al.  Sweetening Ontologies with DOLCE , 2002, EKAW.

[9]  Sandro Rama Fiorini,et al.  Semantic image interpretation of gamma ray profiles in petroleum exploration , 2011, Expert Syst. Appl..

[10]  Giancarlo Guizzardi,et al.  On Ontology, ontologies, Conceptualizations, Modeling Languages, and (Meta)Models , 2007, DB&IS.

[11]  Benjamin Adams,et al.  Conceptual Space Markup Language (CSML): Towards the Cognitive Semantic Web , 2009, 2009 IEEE International Conference on Semantic Computing.

[12]  Giancarlo Guizzardi,et al.  Ontological foundations for structural conceptual models , 2005 .

[13]  Nicola Guarino,et al.  An Overview of OntoClean , 2004, Handbook on Ontologies.

[14]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[15]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[16]  Aldo Gangemi,et al.  Task taxonomies for knowledge content , 2004 .

[17]  Bernd Neumann,et al.  On scene interpretation with description logics , 2006, Image Vis. Comput..

[18]  Alessandro Saffiotti,et al.  An introduction to the anchoring problem , 2003, Robotics Auton. Syst..

[19]  Bruce A. Draper,et al.  Knowledge-directed vision: control, learning, and integration , 1996, Proc. IEEE.

[20]  M. Thonnat,et al.  Symbol Grounding for Semantic Image Interpretation: From Image Data to Semantics , 2005, Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05).

[21]  John Domingue,et al.  Conceptual Situation Spaces for Semantic Situation-Driven Processes , 2008, ESWC.

[22]  John F. Sowa,et al.  The Role of Logic and Ontology in Language and Reasoning , 2010 .

[23]  Giancarlo Guizzardi,et al.  In Defense of a Trope-Based Ontology for Conceptual Modeling: An Example with the Foundations of Attributes, Weak Entities and Datatypes , 2006, ER.

[24]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[25]  Curso De Ciência Da Computação,et al.  Um Algoritmo de Médias Móveis para Interpretação de Sequências Deposicionais em uma Arquitetura para Interpretação , 2010 .

[26]  Silvia Coradeschi,et al.  Using Knowledge Representation for Perceptual Anchoring in a Robotic System , 2008, Int. J. Artif. Intell. Tools.

[27]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[28]  Salvatore Gaglio,et al.  Anchoring symbols to conceptual spaces: the case of dynamic scenarios , 2003, Robotics Auton. Syst..

[29]  Sandro Rama Fiorini,et al.  A Symbol Grounding Model for Semantic Interpretation of 2-D Line Charts , 2010, 2010 14th IEEE International Enterprise Distributed Object Computing Conference Workshops.

[30]  Sandro Rama Fiorini,et al.  Ontological Primitives for Visual Knowledge , 2010, SBIA.

[31]  Richard Lepage,et al.  Knowledge-Based Image Understanding Systems: A Survey , 1997, Comput. Vis. Image Underst..

[32]  Steffen Staab,et al.  Semantic Annotation of Images and Videos for Multimedia Analysis , 2005, ESWC.

[33]  Barry Smith,et al.  Formal ontology, common sense and cognitive science , 1995, Int. J. Hum. Comput. Stud..

[34]  David A. Bell,et al.  Integrating visual ontologies and wavelets for image content retrieval , 1998, Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130).

[35]  Peter Gärdenfors,et al.  A grounding framework , 2009, Autonomous Agents and Multi-Agent Systems.

[36]  Anthony G. Cohn,et al.  Towards an Architecture for Cognitive Vision Using Qualitative Spatio-temporal Representations and Abduction , 2003, Spatial Cognition.