HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation

[1]  Martin Braddock,et al.  HIV-1 TAT “activates” presynthesized RNA in the nucleus , 1989, Cell.

[2]  P. Luciw,et al.  Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. , 1989, Genes & development.

[3]  K. Jones,et al.  In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions. , 1989, Genes & development.

[4]  R. Gaynor,et al.  Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. , 1989, The EMBO journal.

[5]  B. Cullen,et al.  Identification of a U5-specific sequence required for efficient polyadenylation within the human immunodeficiency virus long terminal repeat , 1989, Journal of virology.

[6]  K. Jeang,et al.  Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type I tat proteins occurs in the absence of de novo protein synthesis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Lucito,et al.  Elements required for transcription initiation of the human U2 snRNA gene coincide with elements required for snRNA 3′ end formation. , 1988, The EMBO journal.

[8]  H. Varmus,et al.  Regulation of HIV and HTLV gene expression. , 1988, Genes & development.

[9]  Eric C. Holland,et al.  HIV-1 tat trans-activation requires the loop sequence within tar , 1988, Nature.

[10]  P. Loewenstein,et al.  An adenovirus E1A protein domain activates transcription in vivo and in vitro in the absence of protein synthesis , 1988, Cell.

[11]  M. Mathews,et al.  Trans-activation of the human immunodeficiency virus long terminal repeat sequences, expressed in an adenovirus vector, by the adenovirus E1A 13S protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Capon,et al.  A discrete element 3' of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans activator , 1988, Molecular and cellular biology.

[13]  Michael B. Mathews,et al.  Transcriptional but not translational regulation of HIV-1 by the tat gene product , 1988, Nature.

[14]  D. Baltimore,et al.  Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. , 1988, Science.

[15]  B. Cullen,et al.  Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type I long terminal repeat , 1988, Journal of virology.

[16]  F. Wong-Staal,et al.  Site-directed mutagenesis of two trans-regulatory genes (tat-III,trs) of HIV-1. , 1988, Science.

[17]  Jeffrey W. Roberts Phage lambda and the regulation of transcription termination , 1988, Cell.

[18]  P. Luciw,et al.  Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product , 1987, Nature.

[19]  P. Luciw,et al.  Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Cullen,et al.  Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Capon,et al.  Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein , 1987, Cell.

[22]  P. Luciw,et al.  Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. Pavlakis,et al.  Expression and characterization of the trans-activator of HTLV-III/LAV virus. , 1986, Science.

[24]  A. Weiner,et al.  Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements , 1986, Cell.

[25]  H. E. N. D. Vegvar,et al.  3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters , 1986, Cell.

[26]  Bryan R. Cullen,et al.  Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism , 1986, Cell.

[27]  M. Feinberg,et al.  HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA , 1986, Cell.

[28]  J. Sodroski,et al.  Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III , 1986, Nature.

[29]  S. Arya,et al.  Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). , 1985, Science.

[30]  J. Sodroski,et al.  Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. , 1985, Science.

[31]  J. Sodroski,et al.  The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat , 1985, Cell.

[32]  J. Sodroski,et al.  Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. , 1985, Science.

[33]  Michael E. Greenberg,et al.  Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene , 1984, Nature.

[34]  B. Haynes,et al.  Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. , 1984, Science.

[35]  R. Gallo,et al.  Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. , 1984, Science.

[36]  J. Chermann,et al.  Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). , 1983, Science.

[37]  H. Blau,et al.  Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed , 1983, Molecular and cellular biology.

[38]  N. Jones,et al.  Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells , 1979, Cell.

[39]  J. F. Atkins,et al.  Cell-free synthesis of adenovirus 2 proteins programmed by fractionated messenger RNA: a comparison of polypeptide products and messenger RNA lengths. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W. Rutter,et al.  Specific Inhibition of Nuclear RNA Polymerase II by α-Amanitin , 1970, Science.

[41]  T. Pieler,et al.  Common mechanisms of promoter recognition by RNA polymerases II and III. , 1989, Trends in genetics : TIG.

[42]  A. Berk Adenovirus promoters and E1A transactivation. , 1986, Annual review of genetics.