Herbrand-Confluence

We consider cut-elimination in the sequent calculus for classical first-order logic. It is well known that this system, in its most general form, is neither confluent nor strongly normalizing. In this work we take a coarser (and mathematically more realistic) look at cut-free proofs. We analyze which witnesses they choose for which quantifiers, or in other words: we only consider the Herbrand-disjunction of a cut-free proof. Our main theorem is a confluence result for a natural class of proofs: all (possibly infinitely many) normal forms of the non-erasing reduction lead to the same Herbrand-disjunction.

[1]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[2]  Samuel R. Buss,et al.  On Herbrand's Theorem , 1994, LCC.

[3]  Dale Miller,et al.  A Systematic Approach to Canonicity in the Classical Sequent Calculus , 2012, CSL.

[4]  Matthias Baaz,et al.  On the complexity of proof deskolemization , 2012, J. Symb. Log..

[5]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[6]  Daniel Weller On the elimination of quantifier-free cuts☆ , 2011, Theor. Comput. Sci..

[7]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[8]  J. Avigad The computational content of classical arithmetic , 2009, 0901.2551.

[9]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[10]  Stefan Hetzl,et al.  The Isomorphism Between Expansion Proofs and Multi-Focused Sequent Proofs , 2012 .

[11]  Florent Jacquemard,et al.  Rigid tree automata and applications , 2011, Inf. Comput..

[12]  Florent Jacquemard,et al.  Rigid Tree Automata , 2009, LATA.

[13]  Alexander Leitsch,et al.  Cut-Elimination: Experiments with CERES , 2005, LPAR.

[14]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[15]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[16]  Stefan Hetzl,et al.  On the form of witness terms , 2010, Arch. Math. Log..

[17]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[18]  H. Hornich Die gegenwärtige Lage in der mathematischen Grundlagenforschung. — Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie , 1939 .

[19]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[20]  Trifon Trifonov,et al.  Exploring the Computational Content of the Infinite Pigeonhole Principle , 2012, J. Log. Comput..

[21]  J. Zucker The correspondence between cut-elimination and normalization II , 1974 .

[22]  Stefano Berardi,et al.  A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..

[23]  Alexander Leitsch,et al.  Towards Algorithmic Cut-Introduction , 2012, LPAR.

[24]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[25]  Matthias Baaz,et al.  On the non-confluence of cut-elimination , 2011, The Journal of Symbolic Logic.

[26]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[27]  Alexander Leitsch,et al.  CERES: An analysis of Fürstenberg's proof of the infinity of primes , 2008, Theoretical Computer Science.

[28]  Richard McKinley,et al.  Categories and Subject Descriptors: F4.1 [Mathematical logic and formal languages]: Mathematical , 2022 .

[29]  Alexander Leitsch,et al.  Algorithmic introduction of quantified cuts , 2014, Theor. Comput. Sci..

[30]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[31]  Stefan Hetzl,et al.  Applying Tree Languages in Proof Theory , 2012, LATA.

[32]  Christian Urban,et al.  Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.

[33]  H. Schwichtenberg Proof Theory: Some Applications of Cut-Elimination , 1977 .

[34]  Willem Heijltjes,et al.  Classical proof forestry , 2010, Ann. Pure Appl. Log..

[35]  Lutz Straßburger,et al.  Herbrand-Confluence for Cut Elimination in Classical First Order Logic , 2012, CSL.

[36]  Stefan Hetzl,et al.  The Computational Content of Arithmetical Proofs , 2012, Notre Dame J. Formal Log..