Herbrand-Confluence
暂无分享,去创建一个
[1] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[2] Samuel R. Buss,et al. On Herbrand's Theorem , 1994, LCC.
[3] Dale Miller,et al. A Systematic Approach to Canonicity in the Classical Sequent Calculus , 2012, CSL.
[4] Matthias Baaz,et al. On the complexity of proof deskolemization , 2012, J. Symb. Log..
[5] Jacques Herbrand. Recherches sur la théorie de la démonstration , 1930 .
[6] Daniel Weller. On the elimination of quantifier-free cuts☆ , 2011, Theor. Comput. Sci..
[7] Helmut Schwichtenberg,et al. Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..
[8] J. Avigad. The computational content of classical arithmetic , 2009, 0901.2551.
[9] Jean Gallier,et al. Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..
[10] Stefan Hetzl,et al. The Isomorphism Between Expansion Proofs and Multi-Focused Sequent Proofs , 2012 .
[11] Florent Jacquemard,et al. Rigid tree automata and applications , 2011, Inf. Comput..
[12] Florent Jacquemard,et al. Rigid Tree Automata , 2009, LATA.
[13] Alexander Leitsch,et al. Cut-Elimination: Experiments with CERES , 2005, LPAR.
[14] Vincent Danos,et al. A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.
[15] Alexander Leitsch,et al. Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..
[16] Stefan Hetzl,et al. On the form of witness terms , 2010, Arch. Math. Log..
[17] Alexander Leitsch,et al. On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.
[18] H. Hornich. Die gegenwärtige Lage in der mathematischen Grundlagenforschung. — Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie , 1939 .
[19] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[20] Trifon Trifonov,et al. Exploring the Computational Content of the Infinite Pigeonhole Principle , 2012, J. Log. Comput..
[21] J. Zucker. The correspondence between cut-elimination and normalization II , 1974 .
[22] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[23] Alexander Leitsch,et al. Towards Algorithmic Cut-Introduction , 2012, LPAR.
[24] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[25] Matthias Baaz,et al. On the non-confluence of cut-elimination , 2011, The Journal of Symbolic Logic.
[26] Dale A. Miller,et al. A compact representation of proofs , 1987, Stud Logica.
[27] Alexander Leitsch,et al. CERES: An analysis of Fürstenberg's proof of the infinity of primes , 2008, Theoretical Computer Science.
[28] Richard McKinley,et al. Categories and Subject Descriptors: F4.1 [Mathematical logic and formal languages]: Mathematical , 2022 .
[29] Alexander Leitsch,et al. Algorithmic introduction of quantified cuts , 2014, Theor. Comput. Sci..
[30] Ferenc Gécseg,et al. Tree Languages , 1997, Handbook of Formal Languages.
[31] Stefan Hetzl,et al. Applying Tree Languages in Proof Theory , 2012, LATA.
[32] Christian Urban,et al. Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.
[33] H. Schwichtenberg. Proof Theory: Some Applications of Cut-Elimination , 1977 .
[34] Willem Heijltjes,et al. Classical proof forestry , 2010, Ann. Pure Appl. Log..
[35] Lutz Straßburger,et al. Herbrand-Confluence for Cut Elimination in Classical First Order Logic , 2012, CSL.
[36] Stefan Hetzl,et al. The Computational Content of Arithmetical Proofs , 2012, Notre Dame J. Formal Log..