A Class of Analytic Solutions for Verification and Convergence Analysis of Linear and Nonlinear Fluid-Structure Interaction Algorithms

Fluid-structure interaction (FSI) problems are pervasive in the computational engineering community. The need to address challenging FSI problems has led to the development of a broad range of numerical methods addressing a variety of application-specific demands. While a range of numerical and experimental benchmarks are present in the literature, few solutions are available that enable both verification and spatiotemporal convergence analysis. In this paper, we introduce a class of analytic solutions to FSI problems involving shear in channels and pipes. Comprised of 16 separate analytic solutions, our approach is permuted to enable progressive verification and analysis of FSI methods and implementations, in two and three dimensions, for static and transient scenarios as well as for linear and hyperelastic solid materials. Results are shown for a range of analytic models exhibiting progressively complex behavior. The utility of these solutions for analysis of convergence behavior is further demonstrated using a previously published monolithic FSI technique. The resulting class of analytic solutions addresses a core challenge in the development of novel FSI algorithms and implementations, providing a progressive testbed for verification and detailed convergence analysis.

[1]  Hermann Lienhart,et al.  Experimental Study on a Fluid-Structure Interaction Reference Test Case , 2006 .

[2]  Robert Schreiber,et al.  Spurious solutions in driven cavity calculations , 1983 .

[3]  Omar Ghattas,et al.  A variational finite element method for stationary nonlinear fluid-solid interaction , 1995 .

[4]  Olivier A. Bauchau,et al.  Euler-Bernoulli beam theory , 2009 .

[5]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[6]  J. L. Steger,et al.  On the use of composite grid schemes in computational aerodynamics , 1987 .

[7]  Klaus-Jürgen Bathe,et al.  Benchmark problems for incompressible fluid flows with structural interactions , 2007 .

[8]  M. Breuer,et al.  Flow past a cylinder with a flexible splitter plate: A complementary experimental–numerical investigation and a new FSI test case (FSI-PfS-1a) , 2014 .

[9]  Johan Hoffman,et al.  UNIFIED CONTINUUM MODELING OF FLUID-STRUCTURE INTERACTION , 2011 .

[10]  Charles S. Peskin,et al.  Flow patterns around heart valves: a digital computer method for solving the equations of motion , 1973 .

[11]  Stefan Turek,et al.  Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches , 2011 .

[12]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[13]  Christopher D. Bertram,et al.  The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes , 2006 .

[14]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[15]  Reza Razavi,et al.  A partition of unity approach to fluid mechanics and fluid-structure interaction , 2019, Computer methods in applied mechanics and engineering.

[16]  Robert D. Falgout,et al.  A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel , 2012 .

[17]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[18]  W. Wall,et al.  Fluid–structure interaction approaches on fixed grids based on two different domain decomposition ideas , 2008 .

[19]  David Nordsletten,et al.  Validation of a non‐conforming monolithic fluid‐structure interaction method using phase‐contrast MRI , 2017, International journal for numerical methods in biomedical engineering.

[20]  O Röhrle,et al.  Experiment for validation of fluid‐structure interaction models and algorithms , 2017, International journal for numerical methods in biomedical engineering.

[21]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[22]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[23]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[24]  Antonio J. Gil,et al.  An enhanced Immersed Structural Potential Method for fluid-structure interaction , 2013, J. Comput. Phys..

[25]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[26]  E. Oñate,et al.  Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM , 2008 .

[28]  V. Shamanskii A modification of Newton's method , 1967 .

[29]  Johan Hoffman,et al.  Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem , 2017, International journal for numerical methods in biomedical engineering.

[30]  Stephanie Friedhoff,et al.  3D Fluid-Structure Interaction Experiment and Benchmark Results: 3D FSI Experiment and Benchmark Results , 2016 .

[31]  Paolo Crosetto,et al.  Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. , 2013, Medical engineering & physics.

[32]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[33]  Thomas J. R. Hughes,et al.  Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .

[34]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[35]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[36]  J. Womersley Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known , 1955, The Journal of physiology.

[37]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[38]  H. B. Keller,et al.  Driven cavity flows by efficient numerical techniques , 1983 .

[39]  Jack Lee,et al.  Multiphysics Computational Modeling in CHeart , 2016, SIAM J. Sci. Comput..

[40]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[41]  J. L. Steger,et al.  A chimera grid scheme , 2011 .

[42]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[43]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[44]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[45]  Patrick J. Roache,et al.  Symbolic manipulation and computational fluid dynamics , 1983 .

[46]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[47]  Dominique Chapelle,et al.  Coupling schemes for the FSI forward prediction challenge: Comparative study and validation , 2017, International journal for numerical methods in biomedical engineering.

[48]  Antonio J. Gil,et al.  The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..

[49]  David A Bluemke,et al.  Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age. , 2004, AJR. American journal of roentgenology.

[50]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[51]  C. Ross Ethier,et al.  Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .

[52]  J. Womersley Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. , 1957, Physics in medicine and biology.

[53]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[54]  Ben S. Southworth,et al.  Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time , 2018, SIAM J. Matrix Anal. Appl..

[55]  Daniel Pinyen Mok Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion , 2001 .

[56]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[57]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[58]  Guillaume Houzeaux,et al.  A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier–Stokes equations , 2003 .

[59]  David Nordsletten,et al.  A non-conforming monolithic finite element method for problems of coupled mechanics , 2010, J. Comput. Phys..

[60]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[61]  Robert D. Falgout,et al.  Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..