The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  L. Trueb,et al.  Biology of Amphibians , 1986 .

[3]  R Langridge,et al.  Improvements in protein secondary structure prediction by an enhanced neural network. , 1990, Journal of molecular biology.

[4]  D. Cannatella,et al.  THE MAJOR CLADES OF FROGS , 1993 .

[5]  The chromosomes of the living coelacanth and their remarkable similarity to those of one of the most ancient frogs. , 1994, The Journal of heredity.

[6]  F. Bossa,et al.  Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. , 1994, The Journal of biological chemistry.

[7]  A. Mor,et al.  Peptides as weapons against microorganisms in the chemical defense system of vertebrates. , 1995, Annual review of microbiology.

[8]  D. Barra,et al.  Antimicrobial peptides from amphibian skin: what do they tell us? , 1998, Biopolymers.

[9]  R. Hancock,et al.  Peptide antibiotics , 1997, The Lancet.

[10]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[11]  R. Norton,et al.  Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. , 2001, The Biochemical journal.

[12]  N. Karraker Ascaphus truei (Tailed frog) , 2001 .

[13]  Alessandro Tossi,et al.  Amphipathic α helical antimicrobial peptides. , 2001 .

[14]  F. Knoop,et al.  Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). , 2001, Biochimica et biophysica acta.

[15]  K. Lohman,et al.  PHYLOGEOGRAPHY OF THE TAILED FROG (ASCAPHUS TRUEI): IMPLICATIONS FOR THE BIOGEOGRAPHY OF THE PACIFIC NORTHWEST , 2001, Evolution; international journal of organic evolution.

[16]  P. Kinnunen,et al.  Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. , 2002, The Biochemical journal.

[17]  M. Zasloff,et al.  Antimicrobial peptides in health and disease. , 2002, The New England journal of medicine.

[18]  F. Verdonck,et al.  Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. , 2002, European journal of biochemistry.

[19]  H. Kawasaki,et al.  A protein with antimicrobial activity in the skin of Schlegel's green tree frog Rhacophorus schlegelii (Rhacophoridae) identified as histone H2B. , 2003, Biochemical and biophysical research communications.

[20]  P. Nicolas,et al.  Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. , 2003, European journal of biochemistry.

[21]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[22]  P. F. Nielsen,et al.  Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. , 2003, The journal of peptide research : official journal of the American Peptide Society.

[23]  J. Conlon,et al.  Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. , 2004, Biochimica et biophysica acta.

[24]  F. Knoop,et al.  Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog , 2004, Peptides.