Classifying pedestrian movement behaviour from GPS trajectories using visualization and clustering

The quantity and quality of spatial data are increasing rapidly. This is particularly evident in the case of movement data. Devices capable of accurately recording the position of moving entities have become ubiquitous and created an abundance of movement data. Valuable knowledge concerning processes occurring in the physical world can be extracted from these large movement data sets. Geovisual analytics offers powerful techniques to achieve this. This article describes a new geovisual analytics tool specifically designed for movement data. The tool features the classic space-time cube augmented with a novel clustering approach to identify common behaviour. These techniques were used to analyse pedestrian movement in a city environment which revealed the effectiveness of the tool for identifying spatiotemporal patterns.

[1]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[2]  Stefan van der Spek Tracking Tourists in Historic City Centres , 2010, ENTER.

[3]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[4]  Menno-Jan Kraak,et al.  Geovisualization and time : new opportunities for the space - time cube , 2008 .

[5]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[6]  Stefan Wrobel,et al.  Visual analytics tools for analysis of movement data , 2007, SKDD.

[7]  Rebecca N. Wright,et al.  Private Inference Control for Aggregate Database Queries , 2007 .

[8]  J. S. Dowker,et al.  Fundamentals of Physics , 1970, Nature.

[9]  DemsarUrska,et al.  Space-time density of trajectories , 2010 .

[10]  Georg Gartner,et al.  Identifying motion and interest patterns of shoppers for developing personalised wayfinding tools , 2011, J. Locat. Based Serv..

[11]  David M. Mount,et al.  The analysis of a simple k-means clustering algorithm , 2000, SCG '00.

[12]  Kevin Buchin,et al.  Computing the Fréchet distance between simple polygons in polynomial time , 2006, SCG '06.

[13]  Gail K. Auslander,et al.  Attitudes of Family and Professional Care-Givers towards the Use of GPS for Tracking Patients with Dementia: An Exploratory Study , 2009 .

[14]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[15]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[16]  Tieniu Tan,et al.  Comparison of Similarity Measures for Trajectory Clustering in Outdoor Surveillance Scenes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[17]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[18]  Zhouyu Fu,et al.  Semantic-Based Surveillance Video Retrieval , 2007, IEEE Transactions on Image Processing.

[19]  Robert Weibel,et al.  Discovering relative motion patterns in groups of moving point objects , 2005, Int. J. Geogr. Inf. Sci..

[20]  A. Tjoa,et al.  Information and Communication Technologies in Tourism , 1996, Springer Vienna.

[21]  William Wright,et al.  GeoTime Information Visualization , 2004, IEEE Symposium on Information Visualization.

[22]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[23]  Xiaoping Zheng,et al.  Modeling crowd evacuation of a building based on seven methodological approaches , 2009 .

[24]  Christian Gschwend,et al.  Challenges of context-aware movement analysis – lessons learned about crucial data requirements and pre-processing , 2012 .

[25]  A. Tjoa,et al.  Information and Communication Technologies in Tourism , 1996, Springer Vienna.

[26]  Nikolaos Papanikolopoulos,et al.  Clustering of Vehicle Trajectories , 2010, IEEE Transactions on Intelligent Transportation Systems.

[27]  Martin Ester,et al.  Density‐based clustering , 2019, WIREs Data Mining Knowl. Discov..

[28]  Edward Y. Chang,et al.  Parallel Spectral Clustering , 2008, ECML/PKDD.

[29]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[30]  G. Jagannathan,et al.  Seventh IEEE International Conference on Data Mining Workshops - Title , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[31]  Clarke Wilson,et al.  Activity patterns in space and time: calculating representative Hagerstrand trajectories , 2008 .

[32]  J. Schaick Timespace matters - Exploring the gap between knowing about activity patterns of people and knowing how to design and plan urban areas and regions , 2011 .

[33]  Bettina Speckmann,et al.  Context-Aware Similarity of Trajectories , 2012, GIScience.

[34]  Edward Y. Chang,et al.  Parallel Spectral Clustering in Distributed Systems , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Gennady L. Andrienko,et al.  Poster: Dynamic time transformation for interpreting clusters of trajectories with space-time cube , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[36]  Mark Last,et al.  A Compact Representation of Spatio-Temporal Data , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[37]  Yu Zheng,et al.  Computing with Spatial Trajectories , 2011, Computing with Spatial Trajectories.

[38]  Donald C. Trost,et al.  Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases , 2006, IEEE Transactions on Information Technology in Biomedicine.

[39]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[40]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[41]  Daqing Zhang,et al.  Urban Traffic Modelling and Prediction Using Large Scale Taxi GPS Traces , 2012, Pervasive.

[42]  R. A. Bailey,et al.  Towards a Taxonomy , 2013 .

[43]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[44]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[45]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[46]  Osama Masoud,et al.  Learning Traffic Patterns at Intersections by Spectral Clustering of Motion Trajectories , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  M. Trivedi,et al.  Learning trajectory patterns by clustering: Experimental studies and comparative evaluation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Kevin Buchin,et al.  Computing the Fréchet distance between simple polygons , 2008, Comput. Geom..

[49]  Christos Faloutsos,et al.  FTW: fast similarity search under the time warping distance , 2005, PODS.