Quantum Dynamics of H_{2} Trapped within Organic Clathrate Cages.

The rotational and translational dynamics of molecular hydrogen trapped within β-hydroquinone clathrate (H_{2}@β-HQ)-a practical example of a quantum particle trapped within an anisotropic confining potential-were investigated using inelastic neutron scattering and Raman spectroscopy. High-resolution vibrational spectra, including those collected from the VISION spectrometer at Oak Ridge National Laboratory, indicate relatively strong attractive interaction between guest and host with a strikingly large splitting of rotational energy levels compared with similar guest-host systems. Unlike related molecular systems in which confined H_{2} exhibits nearly free rotation, the behavior of H_{2}@β-HQ is explained using a two-dimensional (2D) hindered rotor model with barrier height more than 2 times the rotational constant (-16.2  meV).

[1]  M. Mondelo-Martell,et al.  5D quantum dynamics of the H2@SWNT system: quantitative study of the rotational-translational coupling. , 2015, The Journal of chemical physics.

[2]  Felix Fernandez-Alonso,et al.  Recent and future developments on TOSCA at ISIS , 2014 .

[3]  J. Eckert,et al.  A high rotational barrier for physisorbed hydrogen in an fcu-metal-organic framework. , 2014, Chemical communications.

[4]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[5]  T. Strobel,et al.  Triple Guest Occupancy and Negative Compressibility in Hydrogen-Loaded β-Hydroquinone Clathrate. , 2014, The journal of physical chemistry letters.

[6]  Z. Bačić,et al.  Neutron scattering measurements and computation of the quantum dynamics of hydrogen molecules trapped in the small and large cages of clathrate hydrates. , 2013, The journal of physical chemistry. A.

[7]  Joachim Sauer,et al.  Hydrogen adsorbed in a metal organic framework-5: coupled translation-rotation eigenstates from quantum five-dimensional calculations. , 2012, The Journal of chemical physics.

[8]  J. Long,et al.  Hydrogen adsorption in the metal-organic frameworks Fe2(dobdc) and Fe2(O2)(dobdc). , 2012, Dalton transactions.

[9]  N. Turro,et al.  Theory and spectroscopy of an incarcerated quantum rotor: The infrared spectroscopy, inelastic neutron scattering and nuclear magnetic resonance of H2@C60 at cryogenic temperature , 2011 .

[10]  Jeremiah A. Johnson,et al.  Inelastic neutron scattering of a quantum translator-rotator encapsulated in a closed fullerene cage: Isotope effects and translation-rotation coupling in H 2 @C 60 and HD@C 60 , 2010 .

[11]  John R. D. Copley,et al.  DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data , 2009, Journal of research of the National Institute of Standards and Technology.

[12]  P. A. Seeger,et al.  Resolution of VISION, a crystal-analyzer spectrometer , 2009 .

[13]  Craig M. Brown,et al.  Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study , 2009, Nanotechnology.

[14]  Y. Murata,et al.  Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages. , 2009, Physical review letters.

[15]  E. D. Sloan,et al.  Raman spectroscopic studies of hydrogen clathrate hydrates. , 2009, The Journal of chemical physics.

[16]  E. D. Sloan,et al.  Chemical-clathrate hybrid hydrogen storage: storage in both guest and host. , 2008, Journal of the American Chemical Society.

[17]  M. Zoppi,et al.  Low temperature Raman spectra of hydrogen in simple and binary clathrate hydrates. , 2008, The Journal of chemical physics.

[18]  N. Turro,et al.  H2, HD, and D2 inside C60: coupled translation-rotation eigenstates of the endohedral molecules from quantum five-dimensional calculations. , 2008, The Journal of chemical physics.

[19]  Z. Bačić,et al.  Quantum dynamics of H2, D2, and HD in the small dodecahedral cage of clathrate hydrate: evaluating H2-water nanocage interaction potentials by comparison of theory with inelastic neutron scattering experiments. , 2008, The Journal of chemical physics.

[20]  F. Trouw,et al.  Inelastic neutron scattering study of hydrogen in d8-THF∕D2O ice clathrate , 2007 .

[21]  M. Zoppi,et al.  Quantum rattling of molecular hydrogen in clathrate hydrate nanocavities , 2007, 0706.3275.

[22]  S. Parker,et al.  Vibrational Spectroscopy with Neutrons - With Applications in Chemistry, Biology, Materials Science and Catalysis , 2005 .

[23]  J. Copley,et al.  The Disk Chopper Spectrometer at NIST: a new instrument for quasielastic neutron scattering studies , 2003 .

[24]  F. Trouw,et al.  Quantum dynamics of interstitial H 2 in solid C 60 , 1999 .

[25]  L. Bengtsson,et al.  Two-dimensional quantum rotation of adsorbed H_{2} , 1999 .

[26]  R. C. Ward,et al.  Static and dynamic properties of hydrogen sulphide in hydroquinone clathrates , 1988 .

[27]  J. Harris,et al.  Observation of Rotational Transitions forH2,D2, and HD Adsorbed on Cu(100) , 1982 .

[28]  M. Nielsen,et al.  Inelastic Neutron Scattering and Separation Coefficient of Absorbed Hydrogen: Molecular Alignment and Energy Levels , 1976 .

[29]  T. L. Hill Statistical Mechanics of Multimolecular Adsorption. IV. The Statistical Analog of the BET Constant a1b2/b1a2. Hindered Rotation of a Symmetrical Diatomic Molecule Near a Surface , 1948 .

[30]  E. N. Lassettre,et al.  Theory of Ortho‐Para Hydrogen Separation by Adsorption at Low Temperatures, Isotope Separation , 1960 .

[31]  H. M. Powell 15. The structure of molecular compounds. Part IV. Clathrate compounds , 1948 .

[32]  H. M. Powell,et al.  118. The structure of molecular compounds. Part V. The clathrate compound of quinol and methanol , 1948 .