Polar Alignment and Atomic Decomposition

Structured optimization uses a prescribed set of atoms to assemble a solution that fits a model to data. Polarity, which extends the familiar notion of orthogonality from linear sets to general convex sets, plays a special role in a simple and geometric form of convex duality. This duality correspondence yields a general notion of alignment that leads to an intuitive and complete description of how atoms participate in the final decomposition of the solution. The resulting geometric perspective leads to variations of existing algorithms effective for large-scale problems. We illustrate these ideas with many examples, including applications in matrix completion and morphological component analysis for the separation of mixtures of signals.

[1]  Michael P. Friedlander,et al.  Low-Rank Spectral Optimization via Gauge Duality , 2015, SIAM J. Sci. Comput..

[2]  Joel A. Tropp,et al.  Universality laws for randomized dimension reduction, with applications , 2015, ArXiv.

[3]  Jean-Philippe Vert,et al.  Group lasso with overlap and graph lasso , 2009, ICML '09.

[4]  Xiangrong Zeng,et al.  The Ordered Weighted $\ell_1$ Norm: Atomic Formulation, Projections, and Algorithms , 2014, 1409.4271.

[5]  C. Lemaréchal,et al.  ON A BUNDLE ALGORITHM FOR NONSMOOTH OPTIMIZATION , 1981 .

[6]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[7]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[8]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[9]  Yoram Bresler,et al.  Efficient and guaranteed rank minimization by atomic decomposition , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[11]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[12]  M. Volle,et al.  On a convolution operation obtained by adding level sets : classical and new results , 1995 .

[13]  Michael P. Friedlander,et al.  Bundle methods for dual atomic pursuit , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[14]  Ohad Shamir,et al.  Large-Scale Convex Minimization with a Low-Rank Constraint , 2011, ICML.

[15]  Martin J. Wainwright,et al.  Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling , 2010, IEEE Transactions on Automatic Control.

[16]  Stephen J. Wright,et al.  Forward–Backward Greedy Algorithms for Atomic Norm Regularization , 2014, IEEE Transactions on Signal Processing.

[17]  Volkan Cevher,et al.  Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage , 2017, AISTATS.

[18]  D. Bertsekas,et al.  TWO-METRIC PROJECTION METHODS FOR CONSTRAINED OPTIMIZATION* , 1984 .

[19]  Joel A. Tropp,et al.  Sharp Recovery Bounds for Convex Demixing, with Applications , 2012, Found. Comput. Math..

[20]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[21]  Stefano Lucidi,et al.  A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization , 2016, Journal of Optimization Theory and Applications.

[22]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[23]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[24]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[25]  Michael P. Friedlander,et al.  Polar Convolution , 2018, SIAM J. Optim..

[26]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[27]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[28]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[29]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[30]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[31]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[32]  Alexandre Gramfort,et al.  GAP Safe Screening Rules for Sparse-Group Lasso , 2016, NIPS.

[33]  Paul Grigas,et al.  An Extended Frank-Wolfe Method with "In-Face" Directions, and Its Application to Low-Rank Matrix Completion , 2015, SIAM J. Optim..

[34]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[35]  A. Lewis The Convex Analysis of Unitarily Invariant Matrix Functions , 1995 .

[36]  Robert M. Freund,et al.  Dual gauge programs, with applications to quadratic programming and the minimum-norm problem , 1987, Math. Program..

[37]  Martin Jaggi,et al.  A Simple Algorithm for Nuclear Norm Regularized Problems , 2010, ICML.

[38]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[39]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[40]  Lin Xiao,et al.  Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..

[41]  J. Dunn,et al.  Conditional gradient algorithms with open loop step size rules , 1978 .

[42]  Yehuda Koren,et al.  Lessons from the Netflix prize challenge , 2007, SKDD.

[43]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[44]  Michael P. Friedlander,et al.  Gauge Optimization and Duality , 2013, SIAM J. Optim..

[45]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[46]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[47]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[48]  J. Zowe,et al.  An iterative two-step algorithm for linear complementarity problems , 1994 .

[49]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .