An extremely low-density and temperate giant exoplanet

Transiting extrasolar planets are key objects in the study of the formation, migration, and evolution of planetary systems. In particular, the exploration of the atmospheres of giant planets, through transmission spectroscopy or direct imaging, has revealed a large diversity in their chemical composition and physical properties. Studying these giant planets allows one to test the global climate models that are used for the Earth and other solar system planets. However, these studies are mostly limited either to highly-irradiated transiting giant planets or directly-imaged giant planets at large separations. Here we report the physical characterisation of the planets in a bright multi-planetary system (HIP41378) in which the outer planet, HIP41378 f is a Saturn-sized planet (9.2 ± 0.1 R⊕) with an anomalously low density of 0.09 ± 0.02 g cm⁻³ that is not yet understood. Its equilibrium temperature is about 300 K. Therefore, it represents a planet with a mild temperature, in between the hot Jupiters and the colder giant planets of the Solar System. It opens a new window for atmospheric characterisation of giant exoplanets with a moderate irradiation, with the next-generation space telescopes such as JWST and ARIEL as well as the extremely-large ground-based telescopes. HIP41378 f is thus an important laboratory to understand the effect of the irradiation on the physical properties and chemical composition of the atmosphere of planets.

[1]  J. Fortney,et al.  The Featureless Transmission Spectra of Two Super-puff Planets , 2019, The Astronomical Journal.

[2]  David J Armstrong,et al.  Exoplanet characterisation in the longest known resonant chain: the K2-138 system seen by HARPS , 2019, Astronomy & Astrophysics.

[3]  F. Dai,et al.  Dusty Outflows in Planetary Atmospheres: Understanding “Super-puffs” and Transmission Spectra of Sub-Neptunes , 2019, The Astrophysical Journal.

[4]  D. Ciardi,et al.  Revisiting the HIP 41378 System with K2 and Spitzer , 2018, The Astronomical Journal.

[5]  Keivan G. Stassun,et al.  A Discrete Set of Possible Transit Ephemerides for Two Long-period Gas Giants Orbiting HIP 41378 , 2018, The Astronomical Journal.

[6]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[7]  J. Lunine,et al.  Saturn’s Formation and Early Evolution at the Origin of Jupiter’s Massive Moons , 2018, 1804.02892.

[8]  David J Armstrong,et al.  An Earth-sized exoplanet with a Mercury-like composition , 2018, Nature Astronomy.

[9]  M. Deleuil,et al.  Constraints on Super-Earth Interiors from Stellar Abundances , 2017, 1710.09776.

[10]  S. Barros,et al.  Detecting transit signatures of exoplanetary rings using SOAP3.0 , 2017, 1709.06443.

[11]  F. Bouchy,et al.  The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations , 2017, 1703.06885.

[12]  A. Collier Cameron,et al.  Stacked Bayesian general Lomb-Scargle periodogram : identifying stellar activity signals , 2017, 1702.03885.

[13]  Jacques Laskar,et al.  Radial velocity data analysis with compressed sensing techniques , 2016, 1609.01519.

[14]  Christoph Baranec,et al.  FIVE PLANETS TRANSITING A NINTH MAGNITUDE STAR , 2016, 1606.08441.

[15]  P. Petit,et al.  The evolving magnetic topology of τ Boötis , 2016, 1604.02501.

[16]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[17]  M. Molinaro,et al.  The GAPS programme with HARPS-N at TNG XI. Pr~0211 in M~44: the first multi-planet system in an open cluster , 2016, 1602.00009.

[18]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[19]  P. Berlind,et al.  PLANETARY CANDIDATES FROM THE FIRST YEAR OF THE K2 MISSION , 2015, 1511.07820.

[20]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[21]  A. Misra,et al.  3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS , 2015, 1510.01706.

[22]  M. Griffin,et al.  The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) , 2015, Astronomical Telescopes + Instrumentation.

[23]  J. Almenara,et al.  Absolute masses and radii determination in multiplanetary systems without stellar models , 2015, 1508.06596.

[24]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[25]  A. Santerne,et al.  BGLS: A Bayesian formalism for the generalised Lomb-Scargle periodogram , 2014, 1412.0467.

[26]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[27]  F. Marzari,et al.  TRADES: A new software to derive orbital parameters from observed transit times and radial velocities - Revisiting Kepler-11 and Kepler-9 , 2014, 1408.2844.

[28]  France,et al.  PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance , 2014, 1403.6725.

[29]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[30]  Kento Masuda,et al.  VERY LOW DENSITY PLANETS AROUND KEPLER-51 REVEALED WITH TRANSIT TIMING VARIATIONS AND AN ANOMALY SIMILAR TO A PLANET–PLANET ECLIPSE EVENT , 2014, 1401.2885.

[31]  Jack J. Lissauer,et al.  KEPLER-79'S LOW DENSITY PLANETS , 2013, 1310.2642.

[32]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[33]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[34]  R. Deshpande,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[35]  Nicolas Buchschacher,et al.  Harps-N: the new planet hunter at TNG , 2012, Other Conferences.

[36]  Y. Alibert,et al.  Characterization of exoplanets from their formation - II. The planetary mass-radius relationship , 2012, 1206.3303.

[37]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[38]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[40]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[41]  Christophe Lovis,et al.  Planetary detection limits taking into account stellar noise - I. Observational strategies to reduce stellar oscillation and granulation effects , 2010, 1010.2616.

[42]  Jean-Louis Lizon,et al.  ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations , 2010, Astronomical Telescopes + Instrumentation.

[43]  D. Kipping Morphological Lightcurve Distortions due to Finite Integration Time , 2010, 1004.3741.

[44]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[45]  C. Moutou,et al.  Magnetic cycles of the planet-hosting star τ Bootis – II. A second magnetic polarity reversal , 2009, 0906.4515.

[46]  M. Holman,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2009 .

[47]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[48]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[49]  R. Baluev Assessing the statistical significance of periodogram peaks , 2008 .

[50]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[51]  C. Moutou,et al.  Magnetic cycles of the planet-hosting star τ Bootis , 2008, 0802.1584.

[52]  P. Petit,et al.  ESPaDOnS: The New Generation Stellar Spectro-Polarimeter. Performances and First Results , 2006 .

[53]  Stephen A. Shectman,et al.  The Carnegie Planet Finder Spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[54]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[55]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[56]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[57]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[58]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[59]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[60]  R. Donahue SURFACE DIFFERENTIAL ROTATION IN A SAMPLE OF COOL DWARF STARS , 1993 .

[61]  N. O. Weiss,et al.  The relation between stellar rotation rate and activity cycle periods , 1984 .

[62]  The New Estimates , 1963, British medical journal.

[63]  C. X.,et al.  THE ORBITAL ECCENTRICITY OF SMALL PLANET SYSTEMS , 2018 .

[64]  K. Flaherty,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Abstracts of Recently Accepted Papers V1647 Orionis: One Year into Quiescence Structure and Evolution of Super-earth to Super-jupiter Exoplanets: I. Heavy Element Enrichment in the Interior , 2022 .

[65]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.