Contrasting Infection Strategies in Generalist and Specialist Wasp Parasitoids of Drosophila melanogaster

Although host–parasitoid interactions are becoming well characterized at the organismal and cellular levels, much remains to be understood of the molecular bases for the host immune response and the parasitoids' ability to defeat this immune response. Leptopilina boulardi and L. heterotoma, two closely related, highly infectious natural parasitoids of Drosophila melanogaster, appear to use very different infection strategies at the cellular level. Here, we further characterize cellular level differences in the infection characteristics of these two wasp species using newly derived, virulent inbred strains, and then use whole genome microarrays to compare the transcriptional response of Drosophila to each. While flies attacked by the melanogaster group specialist L. boulardi (strain Lb17) up-regulate numerous genes encoding proteolytic enzymes, components of the Toll and JAK/STAT pathways, and the melanization cascade as part of a combined cellular and humoral innate immune response, flies attacked by the generalist L. heterotoma (strain Lh14) do not appear to initiate an immune transcriptional response at the time points post-infection we assayed, perhaps due to the rapid venom-mediated lysis of host hemocytes (blood cells). Thus, the specialist parasitoid appears to invoke a full-blown immune response in the host, but suppresses and/or evades downstream components of this response. Given that activation of the host immune response likely depletes the energetic resources of the host, the specialist's infection strategy seems relatively disadvantageous. However, we uncover the mechanism for one potentially important fitness tradeoff of the generalist's highly immune suppressive infection strategy.

[1]  Kostas Iatrou,et al.  comprehensive molecular insect science , 2004 .

[2]  A. Jacinto,et al.  Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster , 2006, The Journal of cell biology.

[3]  G. Prévost,et al.  Conversely to its sibling Drosophila melanogaster, D. simulans overcomes the immunosuppressive effects of the parasitoid Asobara citri. , 2005, Developmental and comparative immunology.

[4]  C. Janse,et al.  Complement-Like Protein TEP1 Is a Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae , 2004, Cell.

[5]  F. Frey,et al.  Drosophila resistance genes to parasitoids: chromosomal location and linkage analysis , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  A. Nappi,et al.  Drosophila cellular immunity against parasitoids. , 1997, Parasitology today.

[7]  A. Nappi,et al.  IN VITRO STUDY OF PHYSIOLOGICAL SUPPRESSION OF SUPERNUMERARY PARASITES BY THE ENDOPARASITIC WASP LEPTOPILINA HETEROTOMA , 1986 .

[8]  Y. Carton,et al.  The Drosophila parasitic wasps. , 1986 .

[9]  Y. Carton,et al.  Leptopilina heterotoma and L. boulardi: strategies to avoid cellular defense responses of Drosophila melanogaster. , 1990, Experimental parasitology.

[10]  A. Kolodkin,et al.  Semaphorin-1a acts in concert with the cell adhesion molecules fasciclin II and connectin to regulate axon fasciculation in Drosophila. , 2000, Genetics.

[11]  Russo,et al.  Haemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. , 2001, Journal of insect physiology.

[12]  M. Sugumaran Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. , 2002, Pigment cell research.

[13]  S. Govind,et al.  Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae. , 2005, Journal of insect physiology.

[14]  A. Nappi,et al.  Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. , 1993, Pigment cell research.

[15]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[16]  A. Nappi,et al.  DEVELOPMENTAL AND IMMUNOLOGICAL ASPECTS OF DROSOPHILA–PARASITOID RELATIONSHIPS , 2000, The Journal of parasitology.

[17]  F. Frey,et al.  Phylogeny of six African Leptopilina species (Hymenoptera: Cynipoidea, Figitidae), parasitoids of Drosophila, with description of three new species , 2002 .

[18]  Kraaijeveld Kleptoparasitism as an explanation for paradoxical oviposition decisions of the parasitoid Asobara tabida , 1999 .

[19]  M. Belvin,et al.  A genome-wide analysis of immune responses in Drosophila , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  I. Andó,et al.  Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. , 1999, Molecular cell.

[21]  V. Hartenstein,et al.  Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. , 2015, Developmental cell.

[22]  A. Karter,et al.  Parasite-host coevolution. , 1990, Trends in ecology & evolution.

[23]  F. Frey,et al.  Immune suppressive virus-like particles in a Drosophila parasitoid: significance of their intraspecific morphological variations , 1996, Parasitology.

[24]  P. Giordanengo,et al.  Intraspecific variation in the effects of parasitism by Asobara tabida on phenoloxidase activity of Drosophila melanogaster larvae. , 2000, Journal of invertebrate pathology.

[25]  F. A. Streams Factors affecting the susceptibility of Pseudeucoila bochei eggs to encapsulation by Drosophila melanogaster , 1968 .

[26]  A. Nappi Factors affecting the ability of the wasp parasite Pseudeucoila bochei to inhibit tumourigenesis in Drosophila melanogaster. , 1977, Journal of insect physiology.

[27]  M. Schilthuizen,et al.  Morphological and molecular phylogenetics in the genus Leptopilina (Hymenoptera: Cynipoidea: Eucoilidae) , 1998 .

[28]  J. Drezen,et al.  Haemocyte changes in D. Melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor. , 2005, Journal of insect physiology.

[29]  J. Hoffmann,et al.  Signaling mechanisms in the antimicrobial host defense of Drosophila. , 2000, Current opinion in microbiology.

[30]  I. Andó,et al.  Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Tanda,et al.  The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. , 2005, Developmental biology.

[32]  N. Perrimon,et al.  Sequential activation of signaling pathways during innate immune responses in Drosophila. , 2002, Developmental cell.

[33]  R. Rizki,et al.  Encapsulation of parasitoid eggs in phenoloxidase-deficient mutants of Drosophila melanogaster , 1990 .

[34]  B. Lemaître,et al.  Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. , 2000, Immunity.

[35]  M. Hochberg,et al.  Two competing parasitoid species coexist in sympatry , 1991 .

[36]  Y. Michalakis,et al.  Prevalence-Dependent Costs of Parasite Virulence , 2005, PLoS biology.

[37]  M. Strand,et al.  Inhibitor kappaB-like proteins from a polydnavirus inhibit NF-kappaB activation and suppress the insect immune response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Janeway,et al.  PVF2, a PDGF/VEGF‐like growth factor, induces hemocyte proliferation in Drosophila larvae , 2002, EMBO reports.

[39]  B. Webb,et al.  Polydnavirus‐mediated inhibition of lysozyme gene expression and the antibacterial response , 1998, Insect molecular biology.

[40]  T. Mitchison,et al.  Actin-Based Cell Motility and Cell Locomotion , 1996, Cell.

[41]  B. Webb,et al.  Parasitism-linked block of host plasma melanization. , 2000, Journal of invertebrate pathology.

[42]  B. Lemaître,et al.  Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila* , 2006, Journal of Biological Chemistry.

[43]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[44]  M. Strand,et al.  Evolution of developmental strategies in parasitic hymenoptera. , 2006, Annual review of entomology.

[45]  F. A. Streams,et al.  Inhibition of the defense reaction of Drosophila melanogaster parasitized simultaneously by the wasps Pseudeucoila bochei and Pseudeucoila mellipes , 1969 .

[46]  M. Dushay,et al.  Coagulation in arthropods: defence, wound closure and healing. , 2004, Trends in immunology.

[47]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[48]  G. Burmester,et al.  Bioenergetics of immune functions: fundamental and therapeutic aspects. , 2000, Immunology today.

[49]  G. Rubin,et al.  The Toll and Imd pathways are the major regulators of the immune response in Drosophila , 2002, The EMBO journal.

[50]  C. Shatz,et al.  Neuronal plasticity and cellular immunity: shared molecular mechanisms , 2001, Current Opinion in Neurobiology.

[51]  E. Loker On being a parasite in an invertebrate host: a short survival course. , 1994, The Journal of parasitology.

[52]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Y. Carton,et al.  Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. , 2003, Journal of insect physiology.

[54]  T. Maniatis,et al.  Immune Activation of NF-κB and JNK Requires Drosophila TAK1* , 2003, Journal of Biological Chemistry.

[55]  M. Strand,et al.  Inhibitor κB-like proteins from a polydnavirus inhibit NF-κB activation and suppress the insect immune response , 2005 .

[56]  M. Meister,et al.  Cellular Immune Response to Parasitization in Drosophila Requires the EBF Orthologue Collier , 2004, PLoS biology.

[57]  Norbert Perrimon,et al.  Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. , 2003, Developmental cell.

[58]  Y. Carton,et al.  Ecological and genetic interactions in Drosophila-parasitoids communities: a case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France. , 2004 .

[59]  S. Govind,et al.  Genetic Analysis of Contributions of Dorsal Group and JAK-Stat92E Pathway Genes to Larval Hemocyte Concentration and the Egg Encapsulation Response in Drosophila , 2004, Genetics.

[60]  B. Webb 6.10 – The Biology and Genomics of Polydnaviruses , 2005 .

[61]  F. Frey,et al.  Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila , 1996, Parasitology.

[62]  I. Rebay,et al.  MAE, a dual regulator of the EGFR signaling pathway, is a target of the Ets transcription factors PNT and YAN , 2004, Mechanisms of Development.

[63]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[64]  S. Asgari,et al.  Virus or not? Phylogenetics of polydnaviruses and their wasp carriers. , 2003, Journal of insect physiology.

[65]  R. Vale,et al.  Molecular requirements for actin-based lamella formation in Drosophila S2 cells , 2003, The Journal of cell biology.

[66]  I. Andó,et al.  Drosophila melanogaster Rac2 is necessary for a proper cellular immune response , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[67]  K. Stasiak,et al.  A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. , 2005, Insect biochemistry and molecular biology.

[68]  S. Dupas,et al.  Geographic variation and evolution of immunosuppressive genes in a Drosophila parasitoid , 1999 .

[69]  R. Rizki,et al.  Selective destruction of a host blood cell type by a parasitoid wasp. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Ines Anderl,et al.  A directed screen for genes involved in Drosophila blood cell activation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  U. Theopold,et al.  A protein with protective properties against the cellular defense reactions in insects. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[72]  David S Schneider,et al.  Akt and foxo Dysregulation Contribute to Infection-Induced Wasting in Drosophila , 2006, Current Biology.

[73]  P. Giordanengo,et al.  Comparative study of the strategies evolved by two parasitoids of the genus Asobara to avoid the immune response of the host, Drosophila melanogaster. , 2003, Developmental and comparative immunology.

[74]  A. Nappi,et al.  Genetic determinism of the cellular immune reaction in Drosophila melanogaster , 1992, Heredity.

[75]  R. Rizki,et al.  Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. , 1992, Developmental and comparative immunology.

[76]  D. Zachary,et al.  New insights into Drosophila larval haemocyte functions through genome‐wide analysis , 2005, Cellular microbiology.

[77]  M. Belvin,et al.  A serpin mutant links Toll activation to melanization in the host defence of Drosophila , 2002, The EMBO journal.

[78]  R. Rizki,et al.  Parasitoid‐Induced Cellular Immune Deficiency in Drosophila a , 1994, Annals of the New York Academy of Sciences.

[79]  B. Lanzrein,et al.  Chapter 3 – Hormonal Interactions between Insect Endoparasites and Their Host Insects , 1993 .

[80]  H. Araujo,et al.  The maternal JAK/STAT pathway of Drosophila regulates embryonic dorsal-ventral patterning. , 2004, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[81]  Linda Partridge,et al.  Genome-wide gene expression in response to parasitoid attack in Drosophila , 2005, Genome Biology.

[82]  B. Lemaître,et al.  Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[83]  R. Rizki,et al.  Microtubule inhibitors block the morphological changes induced inDrosophila blood cells by a parasitoid wasp factor , 1990, Experientia.

[84]  F. Frey,et al.  Genetic interactions between the parasitoid wasp Leptopilina boulardi and its Drosophila hosts , 2007, Heredity.

[85]  P. Zipfel,et al.  Requirement for Abl Kinases in T Cell Receptor Signaling , 2004, Current Biology.

[86]  K. Anderson,et al.  Rel/NF-κB double mutants reveal that cellular immunity is central to Drosophila host defense , 2006, Proceedings of the National Academy of Sciences.

[87]  M. Kondo,et al.  Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects , 2005, Science.

[88]  Steven C. Lawlor,et al.  MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data , 2003, Genome Biology.

[89]  I. Walker Die Abwehrreaktion des Wirtes Drosophila melanogaster gegen die zoophage Cynipige Pseudeucoila bochei Weld. , 1959 .

[90]  D. Garza,et al.  dUbc9 negatively regulates the Toll-NF-kappa B pathways in larval hematopoiesis and drosomycin activation in Drosophila. , 2005, Developmental biology.

[91]  G. Prévost,et al.  Hemocyte load and immune resistance to Asobara tabida are correlated in species of the Drosophila melanogaster subgroup. , 1998, Journal of insect physiology.

[92]  V. Schawaroch,et al.  Phylogeny of a paradigm lineage: the Drosophila melanogaster species group (Diptera: Drosophilidae) , 2002 .

[93]  M. Capovilla,et al.  Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Eric Johnson,et al.  Developmental Control of Blood Cell Migration by the Drosophila VEGF Pathway , 2002, Cell.

[95]  M. Strand,et al.  Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor , 1991 .

[96]  R. Lanot,et al.  Postembryonic hematopoiesis in Drosophila. , 2001, Developmental biology.

[97]  O. Terenius,et al.  Parasite‐specific immune response in adult Drosophila melanogaster: a genomic study , 2004, EMBO reports.

[98]  D. Hultmark,et al.  Rac1 signalling in the Drosophila larval cellular immune response , 2006, Journal of Cell Science.

[99]  A. Schmidt,et al.  Cloning, structure, cellular localization, and possible function of the tumor suppressor gene lethal(3)malignant blood neoplasm-1 of Drosophila melanogaster. , 1994, Developmental biology.

[100]  Y. Carton,et al.  Genetic dimension of the coevolution of virulence–resistance in Drosophila – parasitoid wasp relationships , 2003, Heredity.

[101]  I. Andó,et al.  Expression pattern of Filamin-240 in Drosophila blood cells. , 2006, Gene expression patterns : GEP.

[102]  Y. Carton,et al.  Mapping candidate genes for Drosophila melanogaster resistance to the parasitoid wasp Leptopilina boulardi. , 2006, Genetical research.

[103]  N. Perrimon,et al.  Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. , 2004, Developmental biology.

[104]  B. Mathey-Prevot,et al.  Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes , 2004, Oncogene.

[105]  I. Gauld,et al.  Hymenoptera: their biodiversity, and their impact on the diversity of other organisms. , 1993 .

[106]  S. Govind,et al.  Natural infection of D. melanogaster by virulent parasitic wasps induces apoptotic depletion of hematopoietic precursors , 2002, Cell Death and Differentiation.

[107]  L. Herzenberg,et al.  Functional Evolution of the Vertebrate Myb Gene Family , 2005, Genetics.

[108]  A. Nappi,et al.  Haemocytic reactions of Drosophila melanogaster to the parasites Pseudocoila mellipes and P. bochei , 1969 .

[109]  Paul T. Spellman,et al.  Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[110]  U. Theopold,et al.  Insect glycobiology: a lectin multigene family in Drosophila melanogaster. , 1999, Biochemical and biophysical research communications.

[111]  A. Nappi,et al.  Expression of antimicrobial peptide genes after infection by parasitoid wasps in Drosophila. , 1996, Developmental and comparative immunology.

[112]  I. Andó,et al.  Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster. , 2005, Immunology letters.

[113]  G. Prévost,et al.  Avoidance of encapsulation in the absence of VLP by a braconid parasitoid of Drosophila larvae: an ultrastructural study , 1996 .

[114]  P. Ewald Evolution of Infectious Disease , 1993 .